1991:败者为王——诺斯罗普/麦·道 YF-23“黑寡妇II”战斗机(29)
表面行波的存在可能会增大飞机的雷达反射截面积。尽量避免表面开口(特别是在前机身)是当前隐身飞机设计必须遵循的原则。但鸭式布局恰恰难以做到这一点。当雷达照射到机身前部时会在机体表面形成表面波。表面波向后运动到机尾再返回,当遇到不连续处时就会产生二次辐射信号,不幸的是,这时的信号方向是朝向雷达接收机的,因此增大了飞机的前向雷达反射截面积。当然,在表面波向后运动过程中遇到不连续处时也会增大雷达反射截面积,不过是后向的,相对影响小一些。但无论如何,对于隐身飞机而言,减少机体表面的不连续是至关重要的
虽然根据美国空军的要求,ATF 都必然有隐身和机动性兼顾的特点,但各个公司设计思想不同,飞机性能偏重也必然不同。从 YF-23A
最终选择了 V 形尾翼而非 F-22A
的传统四尾翼布局来看,诺斯罗普设计人员追求隐身的意图相当明显,这种设计可以大大减小飞机的侧面雷达反射截面积。由于减少一对尾翼,飞机重量和阻力也可减小,对于提高超音速巡航能力也有助益。但随之而来的就是操纵面的效率问题和飞控系统的复杂化。
机身
为了满足“跨战区航程”的要求,ATF
必须具有足够大的载油量;而且考虑到隐身问题,飞机不能外挂副油箱,所有燃油必须由机内油箱装载。因此无论是 YF-22A 还是
YF-23A,都必须提供足够的机内容积,几乎相当于 F-15 的两倍!从机体尺寸来看,YF-23A
机身长度增加明显,但仍然有限,因此其机内容积增大必然主要来自飞机横截面积的增大。
如果从跨、超音速阻力方面来考虑,飞机横截面积增大不利于按照跨音速面积律来设计飞机。适当地拉长机身,有助于平滑飞机的纵向横截面积分布,减小跨、超音速阻力。但机身加长,必然导致飞机纵向转动惯性增大,这对于提高飞机敏捷性和精确控制能力是不利的。苏-27
的机身长度和 YF-23A 相近,有飞过苏-27 的飞行员说,该机操纵惯性较大,并不是那么好飞的。
