V-22“鱼鹰”杂谈(20)
V-22 快速下降时陷入 VRS 时的计算机模拟气流图,顶视图
涡流环的问题可以通过避免下降过快和在低空低速时作过于泼辣的飞行动作而避开,但在激烈的战斗中,这可能是不现实的要求。在阿富汗山区追缴塔利班时,美国空军的一架
MH-47
为了避开突如其来的地面火力,急剧机动,把机尾打开的跳板上的一个海豹突击队员甩了出去。海豹突击队员都是训练有素的,习惯于直升机作突然、猛烈的机动动作,不时那么轻易就可以甩出去的,这说明了战斗中直升机的机动动作可以有多么激烈。MV-22
如果拉出这样的机动的话,很可能进入涡流环状态而坠毁。涡流环的问题大大限制了直升机在战斗中的机动能力,也增加了人为错误的机会。仿真研究表明,在发动机后倾
95 度、前进速度为 30 节时,猛拉杆可以导致每分钟 800 英尺的突然下跌,此时如果猛推杆,可能导致不可控的下坠,7
秒钟内可以达到每分钟 3,000 英尺的下降速度。2000 年的 21 次高空速降试验中,7 次进入涡流环状态,最严重的一次横滚幅度达到
85 度,掉了 2,000 英尺后才改出,但是 MV-22 的典型作战飞行高度只有 1,000 英尺。
倾转桨飞机的一大特点,是必须采用安置在机翼翼尖的横列双桨(或四桨)。这带来两个问题,一是左右的升力要绝对平衡,二是两个旋翼远离重心,万一两侧因为任何原因而有所不平衡,两侧的升力差别被翼展大大地放大,很难恢复安全的飞行状态。理论上,任一发动机可以通过两根半轴同时驱动两侧旋翼,但一旦有一台发动机故障,MV-22
可能立即失稳,根本不给系统以连接两个半轴的时间。另外,如果驱动旋翼的齿轮箱受损,即使半轴连起来了也不顶用。即使发动机正常,两侧升力平衡,沉重的发动机短舱毕竟离重心太远,像扁担两头挑的一对哑铃,在中等大小的舰船上,海浪造成的横摇可能影响
MV-22 的稳定起降。同样的问题在纵列双桨上不突出,因为前后旋翼的间距没有 MV-22
那么大,旋翼离重心的距离要近,飞机的纵向稳定性也天然比横向稳定性要好。由于美国的航母或两栖攻击舰都是右岛设计,海军和海军陆战队的直升机一般从左舷着舰或离舰,这样就会有一段时间右旋翼在甲板上方,旋翼的升力得到地面效应的加强,但左旋翼在水面上方,地效大大削弱,造成左右的升力不平衡,试飞中发现,这样的不平衡可以导致飞机在瞬时内向左翻滚达
30
度以上,必须急剧加大左发动机功率来恢复平衡。通过训练和严格遵守操作规程,这个问题是可以得到解决的,但在战时高强度起落作业时,人为错误的机会大大增加,可能导致事故。同时,大量直升机在很小的空间里密集起降,下洗气流可以加剧这个问题。倾转桨飞机的另一个特点是旋翼尺寸比同级的直升机要小,这样,为了产生同样的升力,旋翼的下洗气流要比一般的直升机强的多。MV-22