王朝网络
分享
 
 
 

WAVELETS IN INTELLIGENT TRANSPORTATION SYSTEMS增强计算智能的子波:附智能运输系统应用

王朝导购·作者佚名
 
WAVELETS IN INTELLIGENT TRANSPORTATION SYSTEMS增强计算智能的子波:附智能运输系统应用  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Hojjat Adeli等著

出 版 社:

出版时间: 2005-11-1字数:版次: 1页数: 224印刷时间: 2005/11/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780470867426包装: 精装内容简介

This book shows how wavelets can be used to enhance computational intelligence for chaotic and complex pattern recognition problems. By integrating wavelets with other soft computing techniques such as neurocomputing and fuzzy logic, complicated and noisy pattern recognition problems can be solved effectively. The book focuses on applications in intelligent transportation systems (ITS) where a number of very complicated pattern recognition problems have eluded researchers over the past few decades.

Advancing the frontiers of computational intelligence, this book:

Describes ingenious computational models based on novel problem solving and computing techniques such as Case-Based Reasoning, Neurocomputing, and Wavelets, and presents examples to illustrate their importance and use.

Presents a multi-paradigm intelligent systems approach to the freeway traffic incident detection and construction work zone management problems.

Advocates application and integration of wavelets, neural networks and fuzzy logic for modeling the complex traffic flow behaviors leading to effective and efficient control and management solutions.

Presents efficient, reliable, and robust algorithms for automatic detection of incidents on freeways.

Wavelets in Intelligent Transportation Systems is an invaluable resource for computational intelligence researchers and transportation engineers involved in the application of advanced computational techniques for ITS.

目录

Preface

Acknowledgment

About the Authors

1.Introduction

2.Introduction to Wavelet Analysis

2.1 Introduction

2.2 Basic Concept of Wavelets and Wavelet Analysis

2.2.1 What is a Wavelet?

2.2.2 Wavelet Analysis

2.2.3 Types of Wavelets and Wavelet Transforms

2.3 Mathematical Foundations

2.3.1 Sets and Spaces

2.3.2 Sequence and Function Spaces

2.3.3 Independent and Basis Sets

2.3.4 Metric, Normed and Inner Product Spaces

2.3.5 The L2(R) and L2(Z) Spaces

2.3.6 Orthogonality

2.4 The Discrete Wavelet Transform (DWT)

2.5 Multi-resolution Analysis

2.6 Wavelet Bases

2.6.1 Constructing Wavelet Bases

2.6.2 Example Wavelet Systems

2.7 Computing the DWT

2.7.1 Pyramid Algorithm

2.7.2 Practical Considerations

3.Feature Extraction for Traffic Incident Detection Using Wavelet Transform and Linear Discriminant Analysis

3.1 Introduction

3.2 Incident Detection Algorithms

3.3 Discrete Wavelet Transform (DWT) of Traffic Signals

3.4 Linear Discriminant Analysis (LDA)

3.5 Data Acquisition

3.6 Results

4.Adaptive Conjugate Neural Network-Wavelet Model for Traffic Incident Detection

4.1 Introduction

4.2 Improving Traffic Incident Detection

4.3 Adaptive Conjugate Gradient Neural Network Model

4.4 Incident Detection Results Using Various Approaches

4.4.1 LDA

4.4.2 DWT and LDA

4.4.3 ACGNN

4.4.4 DWT, LDA, and ACGNN

4.5 Effect of Data Filtering Using DWT

4.6 Relative Contribution of DWT and LDA for Feature Extraction

4.7 Effects of Freeway Geometry on Incident Detection

4.7.1 Effect of Curvature

4.7.2 Effect of Number of Lanes

4.8 Conclusion

5.Enhancing Fuzzy Neural Network Algorithms Using Neural Networks

5.1 Introduction

5.2 Discrete Wavelet Transform

5.3 Architecture

5.4 Training of the Network

5.5 Filtering of the Traffic Data Using DWT

5.6 Incident Detection Results

6.Fuzzy-Wavelet Radial Basis Function Neural Network Model for Freeway Incident Detection

7.Comparison of Fuzzy-Wavelet RBFNN Freeway Incident Detection Model with California Algorithm

8.Incident Detection Algorithm Using Wavelet Energy Representation of Traffic Patterns

9.Parametric Evaluation of the Wavelet Energy Freeway Incident Detection Algorithm

10.Case-Based Reasoning Model for Work Zone Traffic Management

11.Mesoscopic-Wavelet Freeway Work Zone Flow and Congestion Model

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
Phaselock techniques 锁相技术
Applied statistical decision theory应用统计决策论
Carbocation Chemistry碳阳离子化学
Numerical issues in statistical computing for the social scientist社会科学家统计计算的数值问题
Rational Choice and Judgment: Decision Analysis for the Decider 理想选择与判断:决定者的决策分析
Bayesian Statistics and Marketing 贝氏统计学与营销
Venture Capital and the Finance of Innovation风险资本与革新财政
The Hidden Art of Interviewing People: How to get them to tell you the truth隐性面访技巧:如何让别人告诉你真相
Discount Business Strategy: How the New Market Leaders are Redefining Business Strategy商业折扣战略方法与实施
Uncertain Judgements: Eliciting Expert Probabilities不确定判断:引发专家概率
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有