王朝网络
分享
 
 
 

Bayesian Statistics and Marketing 贝氏统计学与营销

王朝导购·作者佚名
 
Bayesian Statistics and Marketing 贝氏统计学与营销  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,进口原版书,经管与理财 Business & Investing ,

作者: Peter E. Rossi 著

出 版 社:

出版时间: 2006-1-1字数:版次: 1页数: 348印刷时间: 2006/01/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780470863671包装: 精装内容简介

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources.

Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods.

Written by the leading experts in the field, this unique book:

Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models.

Provides a self-contained introduction to Bayesian methods.

Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems.

Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies.

Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.

目录

1 Introduction

1.1 A Basic Paradigm for Marketing Problems

1.2 A Simple Example

1.3 Benefits and Costs of the Bayesian Approach

1.4 An Overview of Methodological Material and Case Studies

1.5 Computing and This Book

Acknowledgements

2 Bayesian Essentials

2.0 Essential Concepts from Distribution Theory

2.1 The Goal of Inference and Bayes’ Theorem

2.2 Conditioning and the Likelihood Principle

2.3 Prediction and Bayes

2.4 Summarizing the Posterior

2.5 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators

2.6 Identification and Bayesian Inference

2.7 Conjugacy, Sufficiency, and Exponential Families

2.8 Regression and Multivariate Analysis Examples

2.9 Integration and Asymptotic Methods

2.10 Importance Sampling

2.11 Simulation Primer for Bayesian Problems

2.12 Simulation from Posterior of Multivariate Regression Model

3 Markov Chain Monte Carlo Methods

3.1 Markov Chain Monte Carlo Methods

3.2 A Simple Example: Bivariate Normal Gibbs Sampler

3.3 Some Markov Chain Theory

3.4 Gibbs Sampler

3.5 Gibbs Sampler for the Seemingly Unrelated Regression Model

3.6 Conditional Distributions and Directed Graphs

3.7 Hierarchical Linear Models

3.8 Data Augmentation and a Probit Example

3.9 Mixtures of Normals

3.10 Metropolis Algorithms

3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model

3.12 Hybrid Markov Chain Monte Carlo Methods

3.13 Diagnostics

4 Unit-Level Models and Discrete Demand

4.1 Latent Variable Models

4.2 Multinomial Probit Model

4.3 Multivariate Probit Model

4.4 Demand Theory and Models Involving Discrete Choice

5 Hierarchical Models for Heterogeneous Units

5.1 Heterogeneity and Priors

5.2 Hierarchical Models

5.3 Inference for Hierarchical Models

5.4 A Hierarchical Multinomial Logit Example

5.5 Using Mixtures of Normals

5.6 Further Elaborations of the Normal Model of Heterogeneity

5.7 Diagnostic Checks of the First-Stage Prior

5.8 Findings and Influence on Marketing Practice

6 Model Choice and Decision Theory

6.1 Model Selection

6.2 Bayes Factors in the Conjugate Setting

6.3 Asymptotic Methods for Computing Bayes Factors

6.4 Computing Bayes Factors Using Importance Sampling

6.5 Bayes Factors Using MCMC Draws

6.6 Bridge Sampling Methods

6.7 Posterior Model Probabilities with Unidentified Parameters

6.8 Chib’s Method

6.9 An Example of Bayes Factor Computation: Diagonal Multinomial Probit Models

6.10 Marketing Decisions and Bayesian Decision Theory

6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information

7 Simultaneity

7.1 A Bayesian Approach to Instrumental Variables

7.2 Structural Models and Endogeneity/Simultaneity

7.3 Nonrandom Marketing Mix Variables

Case Study 1: A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts

Background

Model

Data

Results

Discussion

R Implementation

Case Study 2: Modeling Interdependent Consumer Preferences

Background

Model

Data

Results

Discussion

R Implementation

Case Study 3: Overcoming Scale Usage Heterogeneity

Background

Model

Priors and MCMC Algorithm

Data

Discussion

R Implementation

Case Study 4: A Choice Model with Conjunctive Screening Rules

Background

Model

Data

Results

Discussion

R Implementation

Case Study 5: Modeling Consumer Demand for Variety

Background

Model

Data

Results

Discussion

R Implementation

Appendix A: An Introduction to Hierarchical Bayes Modeling in R

A.1 Setting Up the R Environment

A.2 The R Language

A.3 Hierarchical Bayes Modeling – An Example

Appendix B: A Guide to Installation and Use of bayesm

B.1 Installing bayesm

B.2 Using bayesm

B.3 Obtaining Help on bayesm

B.4 Tips on Using MCMC Methods

B.5 Extending and Adapting Our Code

B.6 Updating bayesm

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
Applied statistical decision theory应用统计决策论
Carbocation Chemistry碳阳离子化学
Numerical issues in statistical computing for the social scientist社会科学家统计计算的数值问题
Rational Choice and Judgment: Decision Analysis for the Decider 理想选择与判断:决定者的决策分析
WAVELETS IN INTELLIGENT TRANSPORTATION SYSTEMS增强计算智能的子波:附智能运输系统应用
Venture Capital and the Finance of Innovation风险资本与革新财政
The Hidden Art of Interviewing People: How to get them to tell you the truth隐性面访技巧:如何让别人告诉你真相
Discount Business Strategy: How the New Market Leaders are Redefining Business Strategy商业折扣战略方法与实施
Uncertain Judgements: Eliciting Expert Probabilities不确定判断:引发专家概率
SCALABLE VIDEO ON DEMAND - ADAPTIVE  INTERNET-BASED DISTRIBUTION可升级的因特网视频按需系统
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有