三角形内角和教学设计
三角形的内角和是180°是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
《三角形内角和》教学设计反思
教学目标:
1.通过测量、撕拼、折叠等方法,探索发现三角形三个内角的和等180°。
2.知道三角形两个角的度数,能求出第三个角的度数。
3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思维方法。
4.能应用三角形内角和的性质解决一些简单的问题。
教具、学具准备:每个学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一个量角器,一副三角板。
教学重点:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角和的度数和等于180度。
教学难点:已知三角形两个角的度数,求出第三个角的度数。
教学方法:提出猜想、小组合作、发现探究、思考验证、总结规律
学生学法:猜想――验证――运用
教学过程:
(一)、创设情境,导入新课
1.谜语导入:形状像座山,稳定性能坚。三边首尾连,学问不简单。 (打一几何图形)板书:三角形
2、师说:我们已经认识了三角形,你知道关于三角形的哪些知识?
学生畅谈已有知识。
3、师:你们知道的可真不少,这节课我们继续学习三角形的有关知识。
板书课题:三角形的内角和
齐读课题
(二)、自主探究,发现规律
1、师:老师这儿有一个三角形纸片,谁能告诉老师三角形的内角指的是哪些角?(三角形内的三个角)那三角形的内角和指什么?(就是三个内角一共的度数)
③师:接下来请你大胆地猜一猜三角形的内角和可能是多少度?
(生:180度 ……)
④、猜测三角形的内角和是180度 的同学请举手。
⑤、教师提问几名同学:你能肯定三角形的内角和是180°吗?你能肯定所有的三角形三个内角的和是180°吗?你们能肯定吗?
生a:肯定是180度。
生b:不一定是180度。
2、师:三角形的内角和是不是180度,这只是我们刚才的猜想,要想知道猜想对不对,可以怎么办?
生:可以用量角器来量一量。
师:怎样量?
生:先用量角器量出3个内角的度数,然后再把3个角的度数加起来。看是不是等于180度。
3、师:你们觉得这种方法行吗?(行)对,我们的数学就是需要用事实说话,用数据说话。接下来请同学们在你的三角形纸片中选一个自己最喜欢的,用量角器量出三角形各个角的度数。算一算它们的内角和,看有什么发现。注意在量的时候做好记录。
(学生独立活动)
师巡视:在使用量角器量角时,我发现有的同学做得很好,注意了量角器的中心和角的顶点重合,0刻度线和角的一条边重合,那另一边所在的刻度,就是角的度数。
(教师巡视,观察哪些能得到180度,哪些不能得到180度)
师:谁愿意给大家汇报一下你的测量情况?
预设:生a:我测量的是一个直角三角形,三个角的度数加起来刚好是180度。
师:还有得到180度的同学吗?其他同学呢?
生b:我测量的是一个锐角三角形,三个角的内角和是178度。
生c:我测量的是一个钝角三角形的内角,三个角的和是181度
师:从同学们汇报的情况看,部分同学没有得到三个角的内角和是180度。这不是和我们猜测的“三角形的内角和是180度”矛盾了吗?是不是我们的猜想错了?
生:我觉得不是,是测量的不够准确。
生2:可能我们制作的学具不够精确。
师小结:对,这就是测量的误差。我们用量角器来进行测量,在操作中很容易出现微小的误差,因而就很有可能得不到三角形的内角和是180°,需要大量的实验才可以,而数学家们也是经过了无数次精密的测量才形成这一结论的。
4、师:刚才我们用测量的方法验证了三角形的内角和是180度,因为误差的存在,很多同学得不到想要的结论。如果不用量角器测量,你还有什么更好的办法证明三角形的内角和是180度吗?接下来就请同学们先独立思考,然后在小组内动手试一试,看哪一个小组同学的想法最具有智慧的光芒,能想出更科学快捷的方法来。
(在这一环节里,我先让学生大胆猜测,然后用量的方法进行验证,汇报结果。通过这一过程,让学生经历了得到180°和没有得到180°两种相矛盾,产生认知冲突,从而发现问题,激发学习兴趣,诱发探究欲望,为后面进一步探究更好的方法创造了条件。)
①小组合作 ,讨论验证方法
②汇报验证方法、结果:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?
预设:生a:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?谁还想展示不一样的三角形剪拼的过程。
生操作:不管什么三角形三个角都能拼成一个平角。
师:刚才这种剪拼的方法可以不用一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。板书:剪拼
生b:我们小组是用撕的方法。我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。(真会动脑筋,不用工具也行)
生c:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:请这位同学折来给大家看看。(投影仪展示)
生:3个角折成了一个平角。
师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)
锐角三角形、钝角三角形都折了几次?(3次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(课件展示:直角三角形折叠的过程
师:折了几次?为什么直角三角形可以只折两次就能证明。
生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。
师小结:说的真清楚,你们的想法可真好,通过刚才的剪拼折叠把没有学过的知识转化成学过的知识从而解决问题,想法真了不起,知道吗,刚才你们的这种方法叫做转化,转化是数学中一种重要的解决问题的思想,老师为你们骄傲。
5小结:师:同学们真是太了不起了,通过自己的努力用不同的方法验证三角形的内角和就是180度。你们从小就具有这样的探究精神,未来的科学家肯定在你们中间产生。老师期待你。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180度’’.
(在学生经历了矛盾,发现问题后,再和小组的同学一起讨论、探究更好的验证方法,教师给予学生足够的时间和空间,让每个学生自主参与剪、拼、撕、折的实践活动,创新思维得到了充分发挥。)
三巩固应用、内化提高
1、师:知道了三角形的内角和是180°,现在让我们来帮笨笨狗吧(课件演示):我想画一个三角形,三角形要有2个直角,怎么画也画不出来,你能帮我想想这是为什么吗?
生:如果一个三角形里有2个直角,2个直角加起来就等于180度了,再加上第三个角的度数,它就不是一个三角形了,所以画不出这样的三角形。
师:说得真清楚,我想笨笨狗一定听懂了。老师也有一个问题,能画出一个含有2个钝角的三角形吗?
生答。
师:也就是说一个三角形里最多只能有一个直角,或者一个钝角。
2、学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
(练习设计由浅入深,由易到难,紧紧围绕三角形的内角和来进行,进一步加深了对三角形内角和的理解和运用。)
教学反思
1.教学中注意了两点:一是让学生理解“内角”“内角和”的含义;二是让学生为了使所得的结论具有普遍性,对锐角三角形、直角三角形、钝角三角形进行操作实验。
2.教学中采用让学生课前剪出锐角三角形、直角三角形、钝角三角形,然后量出每个角的度数,初步感知三角形的内角和的特征。课上让学生汇报三角形的内角和的度数有180°、178°182°等。由于学生在量、画三角形的过程中出现误差,导致出现三角形的内角和是180°左右,在此情形下,让学生通过小组合作交流,探索验证三角形内角和的特征。通过学生间的合作交流、智慧碰撞、思维火花闪现,出现了剪一剪、折一折两种验证方法,从而得出三角形的内角和是180°这一三角形重要性质。
3.在解决问题中,明确应用三角形内角和是180°,可以解决在一个三角形中,已知两个角的度数,可以求第三个角的度数。
不足之处:
在对于直角三角形中,可以引导学生采用简便方法求出其中一个角的度数,对于直角三角形的特点加以分析。
希望本文三角形内角和教学设计能帮到你。