高中问题 不可能!伽罗华早已证明! 数学世界的顽强斗士--伽罗华 天才的童年 伽罗华是法国巴黎郊区一个小镇镇长的儿子。他的父亲是一个自由主义者,母亲受过良好的教育,是伽罗华的启蒙老师。12岁以前,伽
(1) 将直径AB七等分; (2) 以B为圆心,BA为半径作圆弧,交水平中心线于M和N两点; (3) M和N分别与各奇数点(1,3,5点)连接,连线分别交圆周于Ⅰ,Ⅱ,Ⅲ和Ⅴ,Ⅵ,Ⅶ点. (注意,作奇
哪位大哥帮我算算啊,我花了RMB256买的,一个二等奖,几个三等奖呀。 7个3等奖~~~~你看嘛~~第2场单选错了~~那就是几个复试几个3等奖晒~~~如果有4等奖的话那就很多了~~~好象是21个4等奖
我知道这题很简单,很快就会被解决.所以我在线等答案. 其实hillchief的回答,是最好的! 只要把2点中CO=R改为CO=(根号3)R,第3点中.DO=3R改为DO=(根号3) R) 如右图,
由于圆心O是已知的,求出这个题目的答案并不难。 我们可以在圆周上任意选一点A,用圆规量出OA的长度,然后以A点为圆心画弧,得到B点;再以B点为圆心画弧,得到C点;再以C点为圆心圆弧,得到D点。这时,
解:设此线段为AB 从A点开始,任意画一条射线AC (你就使角BAC成30到40度的角吧,随便取) 给圆规任意取一长度,在AC上截三下,分别是点E,F,G 连接GB,然后再分别过点 E 和 F 做
分6等份会吧?平分一个角也该知道。这两个方法接续使用,就分成12份了。在纸上先划十字线确定圆心.半径自定划圆.再用此圆半径大小在圆周上分六等份.和圆心连线.这时圆就分成了六等份了.把六份再分别分一半就
直线?????? 是线段吧! 取一个端点,做一条射线,在射线上用圆规取等长的n段,将第n段的结束点和线段的另一端点连接,然后用射线上的每个点做它的平行线,平行线和原线段的交点就是了 怎么说呢 圆规
贝克汉姆。 米哈伊洛维奇
英国