王朝网络
分享
 
 
 

机器视觉理论、算法与实践(英文版·第3版)(图灵原版计算机科学系列)(Machine Vision Thcory,Algorithms,Practicalities Third Edition)

王朝导购·作者佚名
 
机器视觉理论、算法与实践(英文版·第3版)(图灵原版计算机科学系列)(Machine Vision Thcory,Algorithms,Practicalities Third Edition)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,计算机与互联网,计算机科学理论,计算机结构、设计与制造,
  品牌: E.R.Davies

基本信息·出版社:人民邮电出版社

·页码:934 页

·出版日期:2009年

·ISBN:7115195498/9787115195494

·条形码:9787115195494

·包装版本:3版

·装帧:平装

·开本:16

·正文语种:中文

·丛书名:图灵原版计算机科学系列

·外文书名:Machine Vision Thcory,Algorithms,Practicalities Third Edition

产品信息有问题吗?请帮我们更新产品信息。

内容简介《机器视觉理论、算法与实践(英文版·第3版)》是机器视觉课程的理想教材,作者清晰、系统地阐述了机器视觉的基本概念,介绍理论的基本元素的同时强调算法和实用设计的约束。书中阐述各个主题时,既阐述了基本算法,又介绍了数学工具。此外,《机器视觉理论、算法与实践(英文版·第3版)》还使用案例演示具体技术的应用,并阐明设计现实机器视觉系统的关键约束。

《机器视觉理论、算法与实践(英文版·第3版)》适合作为高等院校计算机及电子工程相关专业研究生的教材,更是从事机器视觉、计算机视觉和机器人领域研究的人员不可多得的技术参考书。

作者简介E.R.Davies,著名机器视觉专家。英国物理学会会士、IEE会士、英国机器视觉协会的执行委员。毕业于牛津大学,现任伦敦大学皇家霍洛威学院机器视觉教授。在机器视觉、图像分析、自动视觉检测、噪声抑制技术等方面有丰富的教学和科研经验。

媒体推荐“本书将图像处理的理论与应用实践完美地结合起来,是机器视觉领域研究人员的必读之作。”

——John Billingsley,南昆士兰大学

“前两版已经奠定了本书在机器视觉领域中独一无二的地位,它是对重要的图像处理和计算机视觉算法进行详细分析的知识宝库!这一版在此基础之上增加了最新进展,是一部全面而且与时俱进的权威著作。”

——Farzin Deravi,肯特大学

编辑推荐40年来,机器视觉在各行各业得到了广泛的应用,包括自动检测、机器人组装、行车导引、流量监控、签名验证、生物测量、遥感图像分析等。但是另一方面,面对大量新的研究成果,要充分理解相关的理论和应用,进行算法和系统的设计,却越来越困难。

《机器视觉理论、算法与实践(英文版·第3版)》能够满足广大读者学习和掌握机器视觉知识的需求。全书图文并茂,清晰、系统地阐述了基本概念,提供了丰富的应用案例和代码,强调了算法和实用设计的各种约束条件。新版做了全面的更新,反映了最新进展,内容更加全面。《机器视觉理论、算法与实践(英文版·第3版)》是机器视觉课程的理想教材,已经成为国内外很多名校的指定教学参考书。同时,《机器视觉理论、算法与实践(英文版·第3版)》也是工程技术人员不可或缺的权威参考书。

目录

CHAPTER 1Vision, the Challenge

1.1Introduction-The Senses1

1.2The Nature of Vision2

1.2.1The Process of Recognition2

1.2.2Tackling the Recognition Problem4

1.2.3Object Location7

1.2.4Scene Analysis9

1.2.5Vision as Inverse Graphics10

1.3From Automated Visual Inspection to Surveillance11

1.4What This Book Is About12

1.5The Following Chapters14

1.6Bibliographical Notes15

PART 1LOW-LEVELVISION17

CHAPTER 2Images and Imaging Operations

2.1Introduction19

2.1.1Gray-scale versus Color21*

2.2Image Processing Operations24

2.2.1Some Basic Operations on Gray-scale Images25

2.2.2Basic Operations on Binary Images32

2.2.3Noise Suppression by Image Accumulation37

2.3Convolutions and Point Spread Functions39

2.4Sequential versus Parallel Operations41

2.5Concluding Remarks43

2.6Bibliographical and Historical Notes44

2.7Problems44

CHAPTER 3Basic Image Filtering Operations

3.1Introduction47

3.2Noise Suppression by Gaussian Smoothing49

3.3Median Filters51

3.4Mode Filters54

3.5Rank Order Filters61

3.6Reducing Computational Load61

3.6.1A Bit-based Method for Fast Median Filtering64

3.7Sharp-Unsharp Masking65

3.8Shifts Introduced by Median Filters66

3.8.1Continuum Model of Median Shifts68

3.8.2Generalization to Gray-scale Images72

3.8.3Shifts Arising with Hybrid Median Filters75

3.8.4Problems with Statistics76

3.9Discrete Model of Median Shifts78

3.9.1Generalization to Gray-scale Images82

3.10Shifts Introduced by Mode Filters84

3.11Shifts Introduced by Mean and Gaussian Filters86

3.12Shifts Introduced by Rank Order Filters86

3.12.1Shifts in Rectangular Neighborhoods87

3.12.2Case of High Curvature91

3.12.3Test of the Model in a Discrete Case91

3.13The Role of Filters in Industrial Applications of Vision94

3.14Color in Image Filtering94

3.15Concluding Remarks96

3.16Bibliographical and Historical Notes96

3.17Problems98

CHAPTER 4Thresholding Techniques

4.1Introduction103

4.2Region-growing Methods104

4.3Thresholding105

4.3.1Finding a Suitable Threshold105

4.3.2Tackling the Problem of Bias in Threshold Selection107

4.3.3A Convenient Mathematical Model111

4.3.4Summary114

4.4Adaptive Thresholding114

4.4.1The Chow and Kaneko Approach118

4.4.2Local Thresholding Methods119

4.5More Thoroughgoing Approaches to Threshold Selection122

4.5.1Variance-based Thresholding122

4.5.2Entropy-based Thresholding123

4.5.3Maximum Likelihood Thresholding125

4.6Concluding Remarks126

4.7Bibliographical and Historical Notes127

4.8Problems129

CHAPTER 5Edge Detection

5.1Introduction131

5.2Basic Theory of Edge Detection132

5.3The Template Matching Approach133

5.4Theory of 3×3 Template Operators135

5.5Summary-Design Constraints and Conclusions140

5.6The Design of Differential Gradient Operators141

5.7The Concept of a Circular Operator143

5.8Detailed Implementation of Circular Operators144

5.9Structured Bands of Pixels in Neighborhoods of Various Sizes146

5.10The Systematic Design of Differential Edge Operators150

5.11Problems with the above Approach-Some Alternative Schemes151

5.12Concluding Remarks155

5.13Bibliographical and Historical Notes156

5.14Problems157

CHAPTER 6Binary Shape Analysis

6.1Introduction159

6.2Connectedness in Binary Images160

6.3Object Labeling and Counting161

6.3.1Solving the Labeling Problem in a More Complex Case164

6.4Metric Properties in Digital Images168

6.5Size Filtering169

6.6The Convex Hull and Its Computation171

6.7Distance Functions and Their Uses177

6.8Skeletons and Thinning181

6.8.1Crossing Number183

6.8.2Parallel and Sequential Implementations of Thinning186

6.8.3Guided Thinning189

6.8.4A Comment on the Nature of the Skeleton189

6.8.5Skeleton Node Analysis191

6.8.6Application of Skeletons for Shape Recognition192

6.9Some Simple Measures for Shape Recognition193

6.10Shape Description by Moments194

6.11Boundary Tracking Procedures195

6.12More Detail on the Sigma and Chi Functions196

6.13Concluding Remarks197

6.14Bibliographical and Historical Notes199

6.15Problems200

CHAPTER 7Boundary Pattern Analysis

7.1Introduction207

7.1.1Hysteresis Thresholding209

7.2Boundary Tracking Procedures212

7.3Template Matching-A Reminder212

7.4Centroidal Profiles213

7.5Problems with the Centroidal Profile Approach214

7.5.1Some Solutions216

7.6The (s,ψ) Plot218

7.7Tackling the Problems of Occlusion220

7.8Chain Code223

7.9The (r, s) Plot224

7.10Accuracy of Boundary Length Measures225

7.11Concluding Remarks227

7.12Bibliographical and Historical Notes228

7.13Problems229

CHAPTER 8Mathematical Morphology

8.1Introduction233

8.2Dilation and Erosion in Binary Images234

8.2.1Dilation and Erosion234

8.2.2Cancellation Effects234

8.2.3Modified Dilation and Erosion Operators235

8.3Mathematical Morphology235

8.3.1Generalized Morphological Dilation235

8.3.2Generalized Morphological Erosion237

8.3.3Duality between Dilation and Erosion238

8.3.4Properties of Dilation and Erosion Operators239

8.3.5Closing and Opening242

8.3.6Summary of Basic Morphological Operations245

8.3.7Hit-and-Miss Transform248

8.3.8Template Matching249

8.4Connectivity-based Analysis of Images249

8.4.1Skeletons and Thinning250

8.5Gray-scale Processing251

8.5.1Morphological Edge Enhancement252

8.5.2Further Remarks on the Generalization to Gray-scale Processing252

8.6Effect of Noise on Morphological Grouping Operations255

8.6.1Detailed Analysis257

8.6.2Discussion259

8.7Concluding Remarks259

8.8Bibliographical and Historical Notes260

8.9Problem261

PART 2INTERMEDIATE-LEVELVISION263

CHAPTER 9Line Detection

9.1Introduction265

9.2Application of the Hough Transform to Line Detection265

9.3The Foot-of-Normal Method269

9.3.1Error Analysis272

9.3.2Quality of the Resulting Data274

9.3.3Application of the Foot-of-Normal Method276

9.4Longitudinal Line Localization276

9.5Final Line Fitting277

9.6Concluding Remarks277

9.7Bibliographical and Historical Notes278

9.8Problems280

CHAPTER 10Circle Detection

10.1Introduction283

10.2Hough-based Schemes for Circular Object Detection284

10.3The Problem of Unknown Circle Radius288

10.3.1Experimental Results290

10.4The Problem of Accurate Center Location295

10.4.1Obtaining a Method for Reducing Computational Load296

10.4.2Improvements on the Basic Scheme299

10.4.3Discussion300

10.4.4Practical Details300

10.5Overcoming the Speed Problem302

10.5.1More Detailed Estimates of Speed303

10.5.2Robustness305

10.5.3Experimental Results306

10.5.4Summary307

10.6Concluding Remarks310

10.7Bibliographical and Historical Notes311

10.8Problems312

CHAPTER 11The Hough Transform and Its Nature

11.1Introduction315

11.2The Generalized Hough Transform315

11.3Setting Up the Generalized Hough Transform-Some Relevant Questions317

11.4Spatial Matched Filtering in Images318

11.5From Spatial Matched Filters to Generalized Hough Transforms319

11.6Gradient Weighting versus Uniform Weighting320

11.6.1Calculation of Sensitivity and Computational Load323

11.7Summary324

11.8Applying the Generalized Hough Transform to Line Detection325

11.9The Effects of Occlusions for Objects with Straight Edges327

11.10Fast Implementations of the Hough Transform329

11.11The Approach of Gerig and Klein332

11.12Concluding Remarks333

11.13Bibliographical and Historical Notes334

11.14Problem337

CHAPTER 12Ellipse Detection

12.1Introduction339

12.2The Diameter Bisection Method339

12.3The Chord-Tangent Method341

12.4Finding the Remaining Ellipse Parameters343

12.5Reducing Computational Load for the Generalized Hough Transform Method345

12.5.1Practical Details349

12.6Comparing the Various Methods353

12.7Concluding Remarks355

12.8Bibliographical and Historical Notes357

12.9Problems358

CHAPTER 13Hole Detection

13.1Introduction361

13.2The Template Matching Approach361

13.3The Lateral Histogram Technique363

13.4The Removal of Ambiguities in the Lateral Histogram Technique363

13.4.1Computational Implications of the Need to Check for Ambiguities364

13.4.2Further Detail of the Subimage Method366

13.5Application of the Lateral Histogram Technique for Object Location368

13.5.1Limitations of the Approach370

13.6Appraisal of the Hole Detection Problem372

13.7Concluding Remarks374

13.8Bibliographical and Historical Notes375

13.9Problems376

CHAPTER 14Polygon and Corner Detection

14.1Introduction379

14.2The Generalized Hough Transform380

14.2.1Straight Edge Detection380

14.3Application to Polygon Detection381

14.3.1The Case of an Arbitrary Triangle382

14.3.2The Case of an Arbitrary Rectangle383

14.3.3Lower Bounds on the Numbers of Parameter Planes385

14.4Determining Polygon Orientation387

14.5Why Corner Detection?389

14.6Template Matching390

14.7Second-order Derivative Schemes391

14.8A Median-Filter-Based Corner Detector393

14.8.1Analyzing the Operation of the Median Detector394

14.8.2Practical Results396

14.9The Hough Transform Approach to Corner Detection399

14.10The Plessey Corner Detector402

14.11Corner Orientation404

14.12Concluding Remarks406

14.13Bibliographical and Historical Notes407

14.14Problems410

CHAPTER 15Abstract Pattern Matching Techniques

15.1Introduction413

15.2A Graph-theoretic Approach to Object Location414

15.2.1A Practical Example-Locating Cream Biscuits419

15.3Possibilities for Saving Computation422

15.4Using the Generalized Hough Transform for Feature Collation424

15.4.1Computational Load426

15.5Generalizing the Maximal Clique and Other Approaches427

15.6Relational Descriptors428

15.7Search432

15.8Concluding Remarks433

15.9Bibliographical and Historical Notes434

15.10Problems437

PART 33-DVISION AND MOTION443

CHAPTER 16The Three-dimensional World

16.1Introduction445

16.2Three-Dimensional Vision-The Variety of Methods446

16.3Projection Schemes for Three-dimensional Vision448

16.3.1Binocular Images450

16.3.2The Correspondence Problem452

16.4Shape from Shading454

16.5Photometric Stereo459

16.6The Assumption of Surface Smoothness462

16.7Shape from Texture464

16.8Use of Structured Lighting464

16.9Three-Dimensional Object Recognition Schemes466

16.10The Method of Ballard and Sabbah468

16.11The Method of Silberberg et al.470

16.12Horaud’s Junction Orientation Technique472

16.13An Important Paradigm-Location of Industrial Parts476

16.14Concluding Remarks478

16.15Bibliographical and Historical Notes480

16.16Problems482

CHAPTER 17Tackling the Perspective n-Point Problem

17.1Introduction487

17.2The Phenomenon of Perspective Inversion487

17.3Ambiguity of Pose under Weak Perspective Projection489

17.4Obtaining Unique Solutions to the Pose Problem493

17.4.1Solution of the3-Point Problem497

17.4.2Using Symmetrical Trapezia for Estimating Pose498

17.5Concluding Remarks498

17.6Bibliographical and Historical Notes501

17.7Problems502

CHAPTER 18Motion

18.1Introduction505

18.2Optical Flow505

18.3Interpretation of Optical Flow Fields509

18.4Using Focus of Expansion to Avoid Collision511

18.5Time-to-Adjacency Analysis513

18.6Basic Difficulties with the Optical Flow Model515

18.7Stereo from Motion516

18.8Applications to the Monitoring of Traffic Flow518

18.8.1The System of Bascle et al.518

18.8.2The System of Koller et al.520

18.9People Tracking524

18.9.1Some Basic Techniques526

18.9.2Within-vehicle Pedestrian Tracking528

18.10Human Gait Analysis530

18.11Model-based Tracking of Animals-A Case Study533

18.12Snakes536

18.13The Kalman Filter538

18.14Concluding Remarks540

18.15Bibliographical and Historical Notes542

18.16Problem543

CHAPTER 19Invariants and Their Applications

19.1Introduction545

19.2Cross Ratios: The “Ratio of Ratios” Concept547

19.3Invariants for Noncollinear Points552

19.3.1Further Remarks about the5-Point Configuration554

19.4Invariants for Points on Conics556

19.5Differential and Semidifferential Invariants560

19.6Symmetrical Cross Ratio Functions562

19.7Concluding Remarks564

19.8Bibliographical and Historical Notes566

19.9Problems567

CHAPTER 20Egomotion and Related Tasks

20.1Introduction571

20.2Autonomous Mobile Robots572

20.3Active Vision573

20.4Vanishing Point Detection574

20.5Navigation for Autonomous Mobile Robots576

20.6Constructing the Plan View of Ground Plane579

20.7Further Factors Involved in Mobile Robot Navigation581

20.8More on Vanishing Points583

20.9Centers of Circles and Ellipses585

20.10Vehicle Guidance in Agriculture-A Case Study588

20.10.13-D Aspects of the Task590

20.10.2Real-time Implementation591

20.11Concluding Remarks592

20.12Bibliographical and Historical Notes592

20.13Problems593

CHAPTER 21Image Transformations and Camera Calibration

21.1Introduction595

21.2Image Transformations596

21.3Camera Calibration601

21.4Intrinsic and Extrinsic Parameters604

21.5Correcting for Radial Distortions607

21.6Multiple-view Vision609

21.7Generalized Epipolar Geometry610

21.8The Essential Matrix611

21.9The Fundamental Matrix613

21.10Properties of the Essential and Fundamental Matrices614

21.11Estimating the Fundamental Matrix615

21.12Image Rectification616

21.133-D Reconstruction617

21.14An Update on the8-Point Algorithm619

21.15Concluding Remarks621

21.16Bibliographical and Historical Notes622

21.17Problems623

PART 4TOWARD REAL-TIME PATTERN RECOGNITIONS YSTEMS625

CHAPTER 22Automated Visual Inspection

22.1Introduction627

22.2The Process of Inspection628

22.3Review of the Types of Objects to Be Inspected629

22.3.1Food Products629

22.3.2Precision Components630

22.3.3Differing Requirements for Size Measurement630

22.3.4Three-dimensional Objects631

22.3.5Other Products and Materials for Inspection632

22.4Summary-The Main Categories of Inspection632

22.5Shape Deviations Relative to a Standard Template634

22.6Inspection of Circular Products635

22.6.1Computation of the Radial Histogram: Statistical Problems636

22.6.2Application of Radial Histograms641

22.7Inspection of Printed Circuits642

22.8Steel Strip and Wood Inspection643

22.9Inspection of Products with High Levels of Variability644

22.10X-ray Inspection648

22.11The Importance of Color in Inspection651

22.12Bringing Inspection to the Factory653

22.13Concluding Remarks654

22.14Bibliographical and Historical Notes656

CHAPTER 23Inspection of Cereal Grains

23.1Introduction659

23.2Case Study 1: Location of Dark Contaminants in Cereals660

23.2.1Application of Morphological and Nonlinear Filters to Locate Rodent Droppings663

23.2.2Appraisal of the Various Schemas664

23.2.3Problems with Closing665

23.3Case Study 2: Location of Insects665

23.3.1The Vectorial Strategy for Linear Feature Detection666

23.3.2Designing Linear Feature Detection Masks for Larger Windows669

23.3.3Application to Cereal Inspection670

23.3.4Experimental Results671

23.4Case Study 3: High-speed Grain Location673

23.4.1Extending an Earlier Sampling Approach673

23.4.2Application to Grain Inspection675

23.4.3Summary679

23.5Optimizing the Output for Sets of Directional Template Masks680

23.5.1Application of the Formulas682

23.5.2Discussion683

23.6Concluding Remarks683

23.7Bibliographical and Historical Notes684

CHAPTER 24Statistical Pattern Recognition

24.1Introduction687

24.2The Nearest Neighbor Algorithm688

24.3Bayes’ Decision Theory691

24.4Relation of the Nearest Neighbor and Bayes’ Approaches693

24.4.1Mathematical Statement of the Problem693

24.4.2The Importance of the Nearest Neighbor Classifier696

24.5The Optimum Number of Features696

24.6Cost Functions and Error-Reject Tradeoff697

24.7The Receiver-Operator Characteristic699

24.8Multiple Classifiers702

24.9Cluster Analysis705

24.9.1Supervised and Unsupervised Learning705

24.9.2Clustering Procedures706

24.10Principal Components Analysis710

24.11The Relevance of Probability in Image Analysis713

24.12The Route to Face Recognition715

24.12.1The Face as Part of a3-D Object716

24.13Another Look at Statistical Pattern Recognition: The Support Vector Machine719

24.14Concluding Remarks720

24.15Bibliographical and Historical Notes722

24.16Problems723

CHAPTER 25Biologically Inspired Recognition Schemes

25.1Introduction725

25.2Artificial Neural Networks726

25.3The Backpropagation Algorithm731

25.4MLP Architectures735

25.5Overfitting to the Training Data736

25.6Optimizing the Network Architecture739

25.7Hebbian Learning740

25.8Case Study: Noise Suppression Using ANNs745

25.9Genetic Algorithms750

25.10Concluding Remarks752

25.11Bibliographical and Historical Notes753

CHAPTER 26Texture

26.1Introduction757

26.2Some Basic Approaches to Texture Analysis763

26.3Gray-level Co-occurrence Matrices764

26.4Laws’ Texture Energy Approach768

26.5Ade’s Eigenfilter Approach771

26.6Appraisal of the Laws and Ade Approaches772

26.7Fractal-based Measures of Texture774

26.8Shape from Texture775

26.9Markov Random Field Models of Texture776

26.10Structural Approaches to Texture Analysis777

26.11Concluding Remarks777

26.12Bibliographical and Historical Notes778

CHAPTER 27Image Acquisition

27.1Introduction781

27.2Illumination Schemes782

27.2.1Eliminating Shadows784

27.2.2Principles for Producing Regions of Uniform Illumination787

27.2.3Case of Two Infinite Parallel Strip Lights790

27.2.4Overview of the Uniform Illumination Scenario793

27.2.5Use of Line-scan Cameras794

27.3Cameras and Digitization796

27.3.1Digitization798

27.4The Sampling Theorem798

27.5Concluding Remarks802

27.6Bibliographical and Historical Notes803

CHAPTER 28Real-time Hardware and Systems Design Considerations

28.1Introduction805

28.2Parallel Processing806

28.3SIMD Systems807

28.4The Gain in Speed Attainable with N Processors809

28.5Flynn’s Classification810

28.6Optimal Implementation of an Image Analysis Algorithm813

28.6.1Hardware Specification and Design813

28.6.2Basic Ideas on Optimal Hardware Implementation814

28.7Some Useful Real-time Hardware Options816

28.8Systems Design Considerations818

28.9Design of Inspection Systems-The Status Quo818

28.10System Optimization822

28.11The Value of Case Studies824

28.12Concluding Remarks825

28.13Bibliographical and Historical Notes827

28.13.1General Background827

28.13.2Recent Highly Relevant Work829

PART 5PERSPECTIVES ON VISION831

CHAPTER 29Machine Vision: Art or Science?

29.1Introduction833

29.2Parameters of Importance in Machine Vision834

29.3Tradeoffs836

29.3.1Some Important Tradeoffs837

29.3.2Tradeoffs for Two-stage Template Matching838

29.4Future Directions839

29.5Hardware, Algorithms, and Processes840

29.6A Retrospective View841

29.7Just a Glimpse of Vision?842

29.8Bibliographical and Historical Notes843

APPENDIXRobust Statistics

A.1Introduction845

A.2Preliminary Definitions and Analysis848

A.3The M-estimator (Influence Function) Approach850

A.4The Least Median of Squares Approach to Regression856

A.5Overview of the Robustness Problem860

A.6The RANSAC Approach861

A.7Concluding Remarks863

A.8Bibliographical and Historical Notes864

A.9Problem865

List of Acronyms and Abbreviations867

References869

Author Index917

Subject Index925

……[看更多目录]

序言An important focus of advances in mechatronics and robotics is the addition of sensory inputs to systems with increasing "intelligence." Without doubt, sight is the "sense of choice." In everyday life, whether driving a car or threading a needle , we depend first on sight. The addition of visual perception to machines promises the greatest improvement and at the same time presents the greatest challenge.

Until relatively recently, the volume of data in the images that make up a video stream has been a serious deterrent to progress. A single frame of very modest resolution might occupy a quarter of a megabyte, so the task of handling thirty or more such frames per second requires substantial computer resources.

Fortunately, the computer and communications industries' investment in entertainment has helped address this challenge. The transmission and processing of video signals are an easy justification for selling the consumer increased computing speed and bandwidth. A digital camera, capable of video capture, has already become a fashion accessory as part of a mobile phone. As a result, video signals have become more accessible to the serious engineer. But the task of acquiring a visual image is just the tip of the iceberg.

While generating sounds and pictures is a well-defined process (speech generation is a standard "accessibility" feature of Windows), the inverse task of recognizing connected speech is still at an unfinished state, a quarter of a century later, as any user of "dictation" software will attest. Still, analyzing sound is not even in the same league with analyzing images, particularly when they are of realworld situations rather than staged pieces with synthetic backgrounds and artificial lighting.

The task is essentially one of data reduction. From the many megabytes of the image stream, the required output might be a simple "All wheel nuts are in place" or "This tomato is ripe." But images tend to be noisy, objects that look sharp to the eye can have broken edges, boundaries can be fuzzy, and straight lines can be illusory. The task of image analysis demands a wealth of background know-how and mathematical analytic tools.

Roy Davies has been developing that rich background for well over two decades. At the time of the UK Robotics Initiative, in the 1980s, Roy had formed a relationship with the company United Biscuits. We fellow researchers might well have been amused by the task of ensuring that the blob of jam on a "Jaffacake" had been placed centrally beneath the enrobing chocolate.

文摘插图:

机器视觉理论、算法与实践(英文版·第3版)(图灵原版计算机科学系列)(Machine Vision Thcory,Algorithms,Practicalities Third Edition)

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
芳心似火(签名本)
全国计算机等级考试教程一级MS Office(全国计算机等级考试教程)(附VCD光盘一张)
瞬间的背后:乔·麦克纳利经典传奇照片解密(世界顶级摄影大师)
思科网络技术学院教程CCNA Discovery:计算机网络设计和支持(附VCD光盘一张)(Designing and Supporting Computer Networks CCNA Discovery Learning Guide)
设计师生存手册:PhotoshopCS3
PhotoshopCS4完全自学教程(中文版)(附DVD光盘一张)
jQuery实战(图灵程序设计丛书·Web开发系列)(jQuery in Action)
Autodesk Maya影视动画设计师标准培训教材(Autodesk 授权培训中心(ATC)推荐教材)(附DVD光盘两张)
思科网络技术学院教程CCNA Exploration:接入WAN(附VCD光盘一张)(Accessing the WAN CCNA Exploration Companion Guide)
思科网络技术学院教程CCNA Exploration:LAN交换无线(附VCD光盘一张)(LAN Switching and Wireless CCNA Exploration Companion Guide)
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有