王朝网络
分享
 
 
 

交通信息智能预测理论与方法

王朝导购·作者佚名
 
交通信息智能预测理论与方法  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,工业技术,汽车与交通运输,公路运输,

作者: 许伦辉,傅惠著

出 版 社: 科学出版社

出版时间: 2009-1-1字数:版次: 1页数: 180印刷时间:开本: 16开印次: 1纸张:I S B N : 9787030230966包装: 平装编辑推荐

本书首次从交通信息获取、可预测性分析、预测建模及预测系统设计等方面,建立了较为完善的智能交通信息预测体系框架。作为集中体现交通信息预测智能化、组合化发展趋势的参考书,重点介绍了灰色系统理论、卡尔曼滤波理论、人工神经网络、支持向量机及组合预测理论在交通信息预测方面的新应用和新成果;同时,针对最近兴起的交通混沌这一新兴研究课题,较为系统地论述了交通混沌的概念、特征量计算、混沌识别及其预测方法。 该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。

内容简介

交通信息智能预测,是指以历史的、现有的交通及相关因素的调查统计资料为依据,运用智能化的计算方法,对目标区域交通系统未来状况的测定。交通信息智能预测是预测学的一个分支,是现代交通规划学和智能交通系统(ITS)的重要组成部分。

本书在分析城市宏观交通流特点与短时交通系统动力学特性的基础上,阐述了可预测性分析和交通信息智能预测模型选择方法,建立了完整的道路交通信息智能化预测体系;重点论述了交通信息智能预测模型与方法,包括灰色预测方法、卡尔曼滤波方法、神经网络方法、支持向量机方法及组合预测方法等。同时,本书也介绍了基于多Agent理论的智能预测系统设计方法。

本书取材新颖,体现了近年来交通信息智能预测研究方面的新理论与新进展,深入浅出地介绍了交通信息智能预测理论体系,并通过大量实例阐述了交通信息智能预测方法的应用。

本书可作为交通工程专业、自动控制专业、系统工程等专业本科生、研究生以及相关学科领域研究人员的参考书。

目录

《智能科学技术著作丛书》序

前言

第1章 绪论

1.1 国内外智能交通系统研究概述

1.2 交通信息预测研究的必要性

1.3 交通信息预测理论与方法

1.3.1 现代预测发展概况

1.3.2 交通信息预测方法分类

1.3.3 交通信息预测的发展趋势

1.4 交通信息智能预测的研究内容及工作流程

1.4.1 交通信息智能预测的研究内容

1.4.2 交通信息智能预测流程

1.5 本书内容与结构安排

1.6 小结

参考文献

第2章 交通信息智能预测中的信息获取

2.1 概述

2.2 交通信息检测器

2.2.1 移动式交通信息获取

2.2.2 固定式交通信息获取

2.2.3 基础交通信息采集

2.3 无检测器道路交通信息获取

2.3.1 邻近交叉口关联分析方法

2.3.2 基于数据融合的交通信息获取技术

2.4 小结

参考文献

第3章 基于动力学特性的交通信息可预测性分析

3.1 概述

3.2 交通系统动力学特性分析方法

3.2.1 交通系统动力学特性研究历程

3.2.2 研究意义及分析流程

3.3 交通系统非线性特征量的计算

3.4 交通信息可预测性分析流程

3.4.1 可预测性分析流程

3.4.2 可预测性递归图构造方法

3.5 交通信息可预测性分析实例

3.5.1 现实交通系统基本特性分析

3.5.2 现实交通系统动力学特性分析

3.6 小结

参考文献

第4章 宏观交通信息预测模型与方法

4.1 概述

4.2 回归预测方法

4.2.1 一元线性回归

4.2.2 多元线性回归

4.2.3 非线性回归

4.2.4 逐步回归

4.3 确定性时间序列预测方法

4.3.1 时间序列平滑预测方法

4.3.2 趋势曲线模型预测方法

4.4 随机性时间序列预测方法

4.4.1 平稳时间序列

4.4.2 白噪声序列

4.4.3 ARMA模型法及其预测步骤

4.4.4 其他随机时间序列预测模型

4.5 小结

参考文献

第5章 基于灰色系统理论的交通信息预测方法及应用

5.1 概述

5.2 灰色预测基本理论

5.2.1 灰色预测基本概念

5.2.2 灰色预测理论的特点

5.2.3 灰色预测模型分类

5.3 GM(1,1)预测模型及应用

5.3.1 模型的建立

5.3.2 模型检验分析

5.3.3 残差辨识

5.3.4 GM(1,1)预测模型应用

5.4 交通信息自适应灰色预测方法及应用

5.4.1 自适应灰色预测原理

5.4.2 交通流量自适应灰色预测

5.5 几类新型灰色预测模型

5.5.1 灰色马尔可夫预测模型

5.5.2 遗传优化灰色预测模型

5.5.3 模糊优化灰色预测模型

5.6 小结

参考文献

第6章 基于卡尔曼滤波理论的交通信息预测方法及应用

6.1 概述

6.2 卡尔曼滤波理论

6.3 基于卡尔曼滤波的交通流量预测模型

6.4 基于灰色关联分析的行程时间卡尔曼滤波方法

6.4.1 行程时间影响因素灰色关联分析

6.4.2 行程时间卡尔曼滤波预测算法

6.4.3 仿真实例

6.5 基于主成分分析的行程时间卡尔曼滤波方法

6.5.1 行程时间影响因素主成分分析

6.5.2 仿真实例

6.6 基于卡尔曼滤波与小波的交通信息预测方法

6.6.1 小波分析概述

6.6.2 卡尔曼滤波与小波结合的优势

6.6.3 基于卡尔曼滤波与小波的交通信息KFW预测算法

6.7 小结

参考文献

第7章 基于人工神经网络理论的交通信息预测方法及应用

7.1 概述

7.2 人工神经网络的基本原理

7.3 人工神经网络的结构形式与学习理论

7.3.1 神经网络结构

7.3.2 学习理论

7.4 基于BP网络的交通信息预测方法及应用

7.4.1 感知器

7.4.2 BP网络及其学习算法

7.4.3 BP算法的改进

7.4.4 BP网络在交通信息预测中的应用

7.5 基于RBF网络的交通信息预测方法及应用

7.5.1 原始数据预处理

7.5.2 RBF网络学习算法

7.5.3 仿真实验及分析

7.6 基于人工神经网络的预测方法研究新进展

7.6.1 遗传神经网络

7.6.2 小波神经网络

7.6.3 粗神经网络

7.7 小结

参考文献

第8章 基于支持向量机理论的交通信息预测方法及应用

8.1 概述

8.2 支持向量机理论

8.3 基于支持向量机理论的交通信息预测算法

8.3.1 基于支持向量回归的交通信息预测算法

8.3.2 基于支持向量回归的交通信息预测仿真

8.4 基于粗糙集理论的SVM交通信息预测

8.4.1 RS理论概述

8.4.2 基于RS理论的SVM交通信息预测原理

8.5 小结

参考文献

第9章 混沌理论及其在交通信息预测中的应用研究

9.1 概述

9.2 混沌现象及有关概念

9.3 交通混沌研究对于交通信息预测的重要意义

9.3.1 混沛与交通混沌的发展沿革

9.3.2 交通混沌及交通分形的研究意义

9.3.3 交通混沌的研究现状

9.4 混沌特征量与交通混沌的识别方法

9.4.1 混沌特征量

9.4.2 基于Lyapunov指数的交通混沌识别

9.5 交通混沌时间序列的全域预测方法

9.6 交通混沌时间序列的局域预测方法

9.6.1 加权零阶局域法

9.6.2 加权一阶局域法

9.7 交通混沌时间序列的最大Lyapunov指数预测方法

9.7.1 最大Lyapunov指数预测算法设计

9.7.2 最大Lyapunov指数预测仿真实验

9.8 小结

参考文献

第10章 组合预测理论及其在交通信息预测中的应用研究

10.1 概述

10.1.1 组合预测的必要性

10.1.2 组合预测的优势

10.1.3 交通信息组合预测研究历程

10.2 交通信息线性组合预测理论

10.2.1 线性组合预测基本理论

10.2.2 递归等权线性组合预测方法

10.2.3 线性组合预测中的几个热点问题

10.3 非线性组合预测及其在交通信息预测中的应用研究

10.3.1 非线性组合预测原理及其算法设计

10.3.2 灰色与多项式非线性组合预测仿真实验

10.4 组合预测理论的重要新进展

10.5 小结

参考文献

第11章 基于多Agent的交通信息智能预测系统设计

11.1 概述

11.2 多Agent理论

11.2.1 Agent的概念和特性

11.2.2 Agent的认知模型

11.2.3 Agent的体系结构

11.2.4 多Agent的基本思想

11.3 基于多Agent理论的智能预测系统结构

11.4 基于多Agent理论的交通信息智能预测

11.4.1 基于多Agent的交通信息智能预测流程

11.4.2 交通信息智能预测系统中的Agent类别

11.4.3 交通信息智能预测系统仿真

11.5 小结

参考文献

书摘插图

第1章 绪论

1.1 国内外智能交通系统研究概述

智能交通系统(intelligent transportation system,ITS)是在关键基础理论模型研究的前提下,把先进的信息技术、数据通信技术、电子控制技术及计算机处理技术等有效地综合运用于地面交通管理体系,从而建立起一种大范围、全方位发挥作用、实时、准确、高效的交通运输管理系统(研究对象可以概括为人、车、路)。

1.世界ITS研究历程

交通运输业的发展水平是国家兴旺发达的重要标志之一。交通运输业的高速发展,一方面促进了物资交流和人们的往来,大大地缩短了出行时间,提高了工作效率;另一方面也带来了许多弊病,特别是地面汽车交通运输,不论是在发达国家还是在发展中国家,都存在着不同程度的问题。尤其近半个世纪以来,交通拥挤、道路阻塞和交通事故频发正越来越严重地困扰着世界各国的大城市。为了提高道路网络的使用效率,解决城市交通拥挤和交通安全问题,从20世纪60年代以来,发达国家进行了城市交通规划研究和交通控制研究。

交通规划是建立在交通需求分析的基础上,其目的是获得交通流量在城市道路网络中的分配状况,从而确定道路网络密度是否能满足现在和未来的交通需求,这一过程是解决交通设施的供给与需求的矛盾,使城市道路网络布局合理化。交通控制主要指城市交叉路口的交通信号控制,目前具有代表性的信号控制系统包括美国的TRANSYT系统、英国的SCOOT系统,以及澳大利亚的SCATS系统等。当城市交叉路口采用了先进的交通信号控制系统后,减少了行车延误时间,提高了路口的通行能力,降低了车辆的停车次数,减少了燃料消耗和汽车排放的有害物质等。到目前为止,世界上已有350多个大城市采用了先进的交通信号控制系统,我国也有沈阳、北京、上海、南京、广州、深圳、大连、南宁、郑州、天津等大城市使用了此类系统。虽然城市交通规划和城市交通控制是城市交通运输网络建设和管理不可缺少的重要环节,但实践证明,仅仅依靠这两种措施不足以经济、高效地解决交通拥挤和交通安全问题。这是因为交通网络是一个复杂大系统,单独从车辆方面考虑或单独从道路方面考虑都是很难解决交通拥挤和安全问题的。

……

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
管理信息系统及其教育应用
血站质量管理培训教程
海岱地区早期农业和人类学研究
大学应用物理习题解答
天然产物化学研究
基础护理操作技能图解
循环经济模拟仿真系统设计与开发
壁上丹青——陕西出土壁画集
数据结构(C++语言版)
中国制造业地理集中与集聚
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有