黄金分割比是?
黄金分割最早见于古希腊和古埃及。黄金分割又称黄金率、中外比,即把一根线段分为长短不等的a、b两段,使其中长线段的比(即a+b)等于短线段b对长线段a的比,列式即为a:(a+b)=b:a,其比值为0.6180339……这种比例在造型上比较悦目,因此,0.618又被称为黄金分割率。 黄金分割长方形的本身是由一个正方形和一个黄金分割的长方形组成,你可以将这两个基本形状进行无限的分割。由于它自身的比例能对人的视觉产生适度的刺激,他的长短比例正好符合人的视觉习惯,因此,使人感到悦目。黄金分割被广泛地应用于建筑、设计、绘画等各方面。 在摄影技术的发展过程中,曾不同程度地借鉴并融汇了其他艺术门类的精华,黄金分割也因此成为摄影构图中最神圣的观念。应用在摄影上最简单的方法就是按照黄金分割率0.618排列出数列2、3、5、8、13、21……并由此可得出2:3、3:5、5:8、8:13、13:21等无数组数的比,这些数的比值均为0.618的近似值,这些比值主要适用于:画面长宽比的确定(如135相机的底片幅面24mmX36mm就是由黄金比得来的)、地平线位置的选择、光影色调的分配、画面空间的分割以及画面视觉中心的确立。摄影构图通常运用的三分法(又称井字形分割法)就是黄金分割的演变,把上方形画面的长、宽各分成三等分,整个画面承井字形分割,井字形分割的交叉点便是画面主体(视觉中心)的最佳位置,是最容易诱导人们视觉兴趣的视觉美点。 摄影构图的许多基本规律是在黄金分割基础上演变而来的。但值得提醒的是,每幅照片无需也不可能完全按照黄金分割去构图。千篇一律会使人感到单调和乏味。关于黄金分割,重要的是掌握它的规律后加以灵活运用。
0.618,老师讲的。
黄金分割律 这是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。这其实是一个数字的比例关系,即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618 : 1或1 : 0.618,也就是说长段的平方等于全长与短段的乘积。0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
应用 美的和谐——黄金分割点
黄金分割点以及黄金分割规律在人们的日常生活中用处很多,倍受人们的青睐,比如我们要试制一种新型材料,需要加入某一种原料增强其强度,这就有加入多少的问题,加多了不行,加少了也不行,只有完全合适才行。比如我们估出每吨加入量在1克至1000克之间,这样我们就可以借用黄金分割规律来简化试验次数,而不必1克,2克……,1000克这样逐一试验,我们用一个有刻度的纸条来表示1至1000克。在纸条上找到618克的地点画一条竖线,做一次试验,然后把纸条对折起来,找到618的对称点382,再做一次试验,如果382克为最好,则把618以外的纸条裁掉。然后再对折,找到382的对称点236做试验,这样循环往复,就可以找到最佳的数值,这就是数学家华罗庚所推广的优选法。这也是黄金分割点在日常生活中的具体运用。
黄金分割
分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项的数学问题。作法很简单,设已知线段为AB,作BD⊥AB使BD=AB/2,连接AD,以D为心,BD为半径作弧交AD于E,再以A为心,AE为半径作弧交AB于C,则C就是所求的分点。
AC=(厾-1)/2AB 记 G=(厾-1)/2=0.6180339…
G称为黄金比或黄金分割数,它有很多奇妙的性质。上述的分割通常叫做黄金分割,或者说将线段分成中末比、中外比或外内比。对中末比作系统的研究,最早是希腊数学家欧多克索斯。但更早的毕达哥拉斯可能已经知道。黄金分割的实际应用,最著名的例子是优选学中的黄金分割法或0.618法。它是美国J.基弗在1953年首先提出来的。1970年以后在中国推广,取得很大的成绩。0.618是G的近似值,在实用上已足够精确。优选法的另一种方法——分数法,是以斐波那契分数列作为依据的
0.614