如果正多边形的每一个内角都是144度,则它的边数为_?
超简单方法哦 !!
first, 180-144,求外角度数 得36
next, 360\36,得10,所以答案就是 10 !
多边形的内角和公式为(n-2)×180 (n为多边形的边数)
正多边形每一个内角都相等,故每个内角的度数为(n-2)×180/n...①
由题意知①式等于144,解该方程可得,n=10
如果正多边形的每一个内角都是144度,则它的边数为10
依据:每个角向中心画线,得到若干个等边三角形,且三角形的底角等于144除以2得72度。由此可知道三角形得顶角是36度。多边形得中心可以看作是360度的角除以36就得到十个角,所以是正十边形。
多边形的内角和公式为(n-2)×180 (n为多边形的边数)
正多边形每一个内角都相等,故每个内角的度数为(n-2)×180/n...①
由题意知①式等于144,解该方程可得,n=10