王朝网络
分享
 
 
 

图像处理分析与机器视觉(第二版)(英文版)

王朝导购·作者佚名
 
  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,计算机/网络,计算机理论,

作者: [美]桑肯 等编著

出 版 社: 人民邮电出版社

出版时间: 2002-1-1字数: 1117000版次: 1页数: 770印刷时间: 2002-6-1开本:印次:纸张: 胶版纸I S B N : 9787115097712包装: 平装编辑推荐

内容简介

本书是为计算机专业图像处理、图像分析和机器视觉课程编写的教材,被美国卡耐基梅隆等大学选用。

本书针对图像处理和机器视觉领域的技术话题展开了广泛深入的讨论,包括多种格式的图像压缩、模糊逻辑识别、3D视觉等等,还附有实例的学习和讨论,力图将复杂的概念用易于理解的算法描述出来。

本书可作为各高等院校计算机专业研究生相应课程的教材,可以结合实际教学情况选用相应的章节。本书对从事此科学领域研究的专业人士也有较高的参考价值。

作者简介

目录

1Introduction1

1.1Summary8

1.2Exercises8

1.3References9

2The digitized image and its properties10

2.1Basic concepts10

2.1.1Image functions10

2.1.2The Dirac distribution and convolution13

2.1.3The Fourier transform13

2.1.4Images as a stochastic process15

2.1.5Images as linear systems17

2.2Image digitization18

2.2.1Sampling18

2.2.2Quantization22

2.2.3Color images23

2.3Digital image properties27

2.3.1Metric and topological properties of digital images27

2.3.2Histograms32

2.3.3Visual perception of the image33

2.3.4Image quality35

2.3.5Noise in images35

2.4Summary37

2.5Exercises38

2.6References40

3Data Structures for image analysis42

3.1Levels of image data representation42

3.2Traditional image data structures43

3.2.1Matrices43

3.2.2Chains45

3.2.3Topological data structures47

3.2.4Relational structures48

3.3Hierarchical data structures49

3.3.1Pyramids49

3.3.2Quadtrees51

3.3.3Other pyramidical structures52

3.4Summary53

3.5Exercises54

3.6References55

4Image pre-processing57

4.1Pixel brightness transformations58

4.1.1Position-dependent brightness correction58

4.1.2Gray-scale transformation59

4.2Geometric transformations62

4.2.1Pixel co-ordinate transformations63

4.2.2Brightness interpolation65

4.3Local pre-processing68

4.3.1Image smoothing69

4.3.2Edge detectors77

4.3.3Zero-crossings of the second derivative83

4.3.4Scale in image processing88

4.3.5Canny edge detection90

4.3.6Parametric edge models93

4.3.7Edges in multi-spectral images94

4.3.8Other local pre-processing operators94

4.3.9Adaptive neighborhood pre-processing98

4.4Image restoration102

4.4.1Degradations that are easy to restore105

4.4.2Inverse filtration106

4.4.3Wiener filtration106

4.5Summary108

4.6Exercises111

4.7References118

5Segmentation123

5.1Thresholding124

5.1.1Threshold detection methods127

5.1.2Optimal thresholding128

5.1.3Multi-spectral thresholding131

5.1.4Thresholding in hierarchical data structures133

5.2Edge-based segmentation134

5.2.1Edge image thresholding135

5.2.2Edge relaxation137

5.2.3Border tracing142

5.2.4Border detection as graph searching148

5.2.5Border detection as dynamic programming158

5.2.6Hough transforms163

5.2.7Border detection using border location information173

5.2.8Region construction from borders174

5.3Region-based segmentation176

5.3.1Region merging177

5.3.2Region splitting181

5.3.3Splitting and merging181

5.3.4Watershed segmentation186

5.3.5Region growing post-processing188

5.4Matching190

5.4.1Matching criteria191

5.4.2Control strategies of matching193

5.5Advanced optimal border and surface detection approaches194

5.5.1Simultaneous detection of border pairs194

5.5.2Surface detection199

5.6Summary205

5.7Exercises210

5.8References216

6Shape representation and description228

6.1Region identification232

6.2Contour-based shape representation and description235

6.2.1Chain codes236

6.2.2Simple geometric border representation237

6.2.3Fourier transforms of boundaries240

6.2.4Boundary description using segment sequences242

6.2.5B-spline representation245

6.2.6Other contour-based shape description approaches248

6.2.7Shape invariants249

6.3Region-baed shape representation and description254

6.3.1Simple scalar region descriptors254

6.3.2Moments259

6.3.3Convex hull262

6.3.4Graph representation based on region skeleton267

6.3.5Region decomposition271

6.3.6Region neighborhood graphs272

6.4Shape classes273

6.5Summary274

6.6Exercises276

6.7References279

7Object recognition290

7.1Knowledge representation291

7.2Statistical pattern recognition297

7.2.1Classification principles 298

7.2.2Classifier setting300

7.2.3Classifier learning303

7.2.4Cluster analysis307

7.3Neural nets308

7.3.1Feed-forward networks310

7.3.2Unsupervised learning312

7.3.3Hopfield neural nets313

7.4Syntactic pattern recognition315

7.4.1Grammars and languages317

7.4.2Syntactic analysis,syntactic classifier319

7.4.3Syntactic classifier learning,grammar inference321

7.5Recognition as graph matching323

7.5.1Isomorphism of graphs and sub-graphs324

7.5.2Similarity of graphs328

7.6Optimization techniques in recognition328

7.6.1Genetic algorithms330

7.6.2Simulated annealing333

7.7Fuzzy systems336

7.7.1Fuzzy sets and fuzzy membership functions336

7.7.2Fuzzy set operators338

7.7.3Fuzzy reasoning339

7.7.4Fuzzy system design and training343

7.8Summary344

7.9Exercises347

7.10References354

8Image understanding362

8.1Image understanding control strategies364

8.1.1Parallel and serial processing control364

8.1.2Hierarchical control364

8.1.3Bottom-up control strategies365

8.1.4Model-based controlstrategies366

8.1.5Combined control strategies367

8.1.6Non-hierarchical control371

8.2Active contour models-snakes374

8.3Point distribution models380

8.4Pattern recognition methods in image understanding390

8.4.1Contextual image classification392

8.5Scene labeling and constraint propagation397

8.5.1Discrete relaxation398

8.5.2Probabilistic relaxation400

8.5.3Searching interpretation trees404

8.6Semantic image segmentation and understanding404

8.6.1Semantic region growing406

8.6.2Genetic image interpretation408

8.7Hidden Markov models417

8.8Summary423

8.9Exercises426

8.10References428

93D Vision,geometry,and radiometry441

9.13D vision tasks442

9.1.1Marr's theory444

9.1.2Other vision paradigms:Active and purposive vision446

9.2Geometry for 3D Vision448

9.2.1Basics of projective geometry448

9.2.2The single perspective camera449

9.2.3An overview of single camera calibration453

9.2.4Calibration of one camera from a known scene455

9.2.5Two cameras,stereopsis457

9.2.6The geometry of two cameras;the fundamental matrix460

9.2.7Relative motion of the camera;the essential matrix462

9.2.8Fundamental matrix estimation from image point correspondences464

9.2.9Applications of epipolar geometry in vision466

9.2.10Three and more cameras471

9.2.11Stereo correspondence algorithms476

9.2.12Active acquisition of range images483

9.3Radiometry and 3D vision486

9.3.1Radiometric considerations in determining gray-level486

9.3.2Surface reflectance490

9.3.3Shape from shading494

9.3.4Photometric stereo498

9.4Summary499

9.5Exercises501

9.6References502

10Use of 3D vision508

10.1Shape from X508

10.1.1Shape from motion508

10.1.2Shape from texture515

10.1.3Other shape from X techniques517

10.2Full 3D objects519

10.2.13D objects,models,and related issues519

10.2.2Line labeling521

10.2.3Volumetric representation,direct measurements523

10.2.4Volumetric modeling strategies525

10.2.5Surface modeling strategies527

10.2.6Registering surface patches and their fusion to get a full 3D model529

10.33D model-based vision535

10.3.1General considerations535

10.3.2Goad's algorithm537

10.3.3Model-based recognition of curved objects from intensity images541

10.3.4Model-based recognition based on range images543

10.42D view-based representations of a 3D scene544

10.4.1Viewing space544

10.4.2Multi-view representations and aspect graphs544

10.4.3Geons as a 2D view-based structural representation545

10.4.4Visualizing 3D real-world scenes using stored collections of 2D views546

10.5Summary551

10.6Exercises552

10.7References553

11Mathematical morphology559

11.1Basic morphological concepts559

11.2Four morphological principles561

11.3Binary dilation and erosion563

11.3.1Dilation563

11.3.2Erosion565

11.3.3Hit-or-miss transformation568

11.3.4Opening and closing568

11.4Gray-scale dilation and erosion568

11.4.1Top surface,umbra,and gray-scale dilation and erosion570

11.4.2Umbra homeomorphism theorem,properties of erosion and dilation,opening and closing573

11.4.3Top hat transformation574

11.5Skeletons and object marking576

11.5.1Homotopic transformations576

11.5.2Skeleton,maximal ball576

11.5.3Thinning,thickening,and homotopic skeleton578

11.5.4Quench function,ultimate erosion581

11.5.5Ultimate erosion and distance functions584

11.5.6Geodesic transformations585

11.5.7Morphological reconstruction586

11.6Granulometry589

11.7Morphological segmentation and watersheds590

11.7.1Particles segmentation,marking,and watersheds590

11.7.2Binary morphological segmentation592

11.7.3Gray-scale segmentation,watersheds594

11.8Summary595

11.9Exercises597

11.10References598

12Linear discrete image transforms600

12.1Basic theory600

12.2Fourier transform602

12.3Hadamard transform604

12.4Discrete cosine transform605

12.5Wavelets606

12.6Other orthogonal image transforms608

12.7Applications of discrete image transforms609

12.8Summary613

12.9Exercises617

12.10References619

13Image data compression621

13.1Image data properties622

13.2Discrete image transforms in image data compression623

13.3Predictive compression methods624

13.4Vector quantization629

13.5Hierarchical and progressive compression methods630

13.6Comparison of compression methods631

13.7Other techniques632

13.8Coding633

13.9JPEG and MPEG image compression634

13.9.1JPEG—still image compression634

13.9.2MPEG-full-motion video compression636

13.10Summary637

13.11Exercises640

13.12References641

14Texture646

14.1Statistical texture description649

14.1.1Methods based on spatial frequencies649

14.1.2Co-occurrence matrices651

14.1.3Edge frequency653

14.1.4Primitive length(run length)655

14.1.5Laws' texture energy measures565

14.1.6Fractal texture description657

14.1.7Other statistical methods of texture description659

14.2Syntactic texture description methods660

14.2.1Shape chain grammars661

14.2.2Graph grammars663

14.2.3Primitive grouping in hierarchical textures664

14.3Hybrid texture description methods666

14.4Texture recognition method applications667

14.5Summary668

14.6Exercises670

14.7References672

15Motion analysis679

15.1Differential motion analysis methods682

15.2Optical flow685

15.2.1Optical flow computation686

15.2.2Global and local optical flow estimation689

15.2.3Optical flow computation approaches690

15.2.4Optical flow in motion analysis693

15.3Analysis based on correspondence of interest points696

15.3.1Detection of interest points696

15.3.2Correspondence of interest points697

15.3.3Object tracking700

15.4Kalman filters708

15.4.1Example709

15.5Summary710

15.6Exercises712

15.7References714

16Case studies722

16.1An optical music recognition system722

16.2Automated image analysis in cardiology727

16.2.1Robust analysis of coronary angiograms730

16.2.2Knowledge-based analysis of intra-vascular ultrasound733

16.3Automated identification of airway trees738

16.4Passive surveillance744

16.5References750

Index755

媒体评论

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
阿库力巴石膏像素描色彩
现代外科治疗学
WINDOWS200——SERVER资源大全(内附光盘)
现代产科治疗学
质量铄金(企业竞争致胜的武器)
MCSE学习指南--设计Windows2000目录服务(Exam 70-219)(含盘)
贝类养殖
从零开始3ds max基础培训教程 (含CD-ROM光盘一张)
儿科临床误诊与防范
PHP与XML整合应用
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有