王朝网络
分享
 
 
 

Probability matching priors概率匹配先验值:高阶渐近法

王朝导购·作者佚名
 
Probability matching priors概率匹配先验值:高阶渐近法  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Gauri Sankar Datta著

出 版 社:

出版时间: 2004-1-1字数:版次: 1页数: 127印刷时间: 2004/01/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780387203294包装: 平装内容简介

Probability matching priors, ensuring frequentist validity of posterior credible sets up to the desired order of asymptotics, are of substantial current interest. They can form the basis of an objective Bayesian analysis. In addition, they provide a route for obtaining accurate frequentist confidence sets, which are meaningful also to a Bayesian. This monograph presents, for the first time in book form, an up-to-date and comprehensive account of probability matching priors addressing the problems of both estimation and prediction. Apart from being useful to researchers, it can be the core of a one-semester graduate course in Bayesian asymptotics.

Gauri Sankar Datta is a professor of statistics at the University of Georgia. He has published extensively in the fields of Bayesian analysis, likelihood inference, survey sampling, and multivariate analysis.

Rahul Mukerjee is a professor of statistics at the Indian Institute of Management Calcutta. He co-authored three other research monographs, including "A Calculus for Factorial Arrangements" in this series. A fellow of the Institute of Mathematical Statistics, Dr. Mukerjee is on the editorial boards of several international journals.

目录

1 Introduction and the Shrinkage Argument

1.1 Scope of the monograph

1.2 The shrinkage argument

1.3 An example

2 Matching Priors for Posterior Quantiles

2.1 Introduction

2.2 Setup, notation and preliminaries

2.3 Posterior quantile

2.4 Characterization of matching priors

2.5 Special cases

2.5.1 The casep=l

2.5.2 The casep=2

2.5.3 Orthogonal parameterization

2.5.4 Two general classes of models

2.6 Further examples

2.7 Invariance

2.8 General parametric functions and Bayesian tolerance limits .

2.8.1 General parametric functions

2.8.2 Bayesian tolerance limits

2.9 Matching alternative coverage probabilities

2.10 Propriety of posteriors

3 Matching Priors for Distribution Functions

3.1 Introduction

3.2 C.d.f. matching priors for a single parametric function

3.2.1 Scalar interest parameter

3.2.2 Single parametric function

3.3 C.d.f. matching priors for multiple parametric functions

3.3.1 Multiple parametric functions

3.3.2 Regression residuals approach to c.d.f, matching

4Matching Priors for Highest Posterior Density Regions..

4.1 Introduction

4.2 Explicit form of an HPD region

4.3 Characterization of HPD matching priors

4.4 Results in the presence of nuisance parameters

5Matching Priors for Other Credible Regions

5.1 Introduction

5.2 Matching priors associated with the LR statistic

5.2.1 Credible region via the LR statistic

5.2.2 Matching priors

5.2.3 Results in the presence of nuisance parameters

5.3 Frequentist Bartlett adjustment

5.4 Matching priors associated with Rao's score and Wald's statistics

5.5 Perturbed ellipsoidal and HPD regions

5.5.1 Perturbed ellipsoidal region

5.5.2 Perturbed HPD region

6 Matching Priors for Prediction

6.1 Introduction

6.2 Matching priors for prediction: no auxiliary variable

6.2.1 Preliminaries: expansion for the predictive density ...

6.2.2 Frequentist validity of posterior quantiles

6.2.3 Frequentist validity of highest posterior predictive density regions

6.2.4 Prediction intervals

6.3 Matching priors for predicting a dependent variable in regression models

6.3.1 Posterior predictive density

6.3.2 Matching conditions

6.3.3 Examples: applications to regression models

6.4 Concluding remarks

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
Lie groups李群
Applied partial differential equations应用偏微分方程
Unsolved problems in number theory在数论中未解决的问题
Using algebraic geometry使用代数的几何学
Optimization methods in electromagnetic radiation电磁辐射中的最优化方法
Mathematical population genetics数学群体遗传学
Introduction to rare event simulation罕有事件模拟概论
Berkeley problems in mathematics数学中伯克利问题
Dermatologic Surgery Pearls皮肤病学外科病例精选
Essentials of oral histology and embryology口腔组织学与胚胎学概要:临床探讨
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有