王朝网络
分享
 
 
 

黎曼几何(英文)(第3版)

王朝导购·作者佚名
 
黎曼几何(英文)(第3版)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,自然科学,数学,几何与拓扑,

作者: (法)加洛特,(法)虎林,(法)拉方丹著

出 版 社: 世界图书出版公司

出版时间: 2008-1-1字数:版次: 1页数: 322印刷时间: 2008/01/01开本: 24开印次: 1纸张: 胶版纸I S B N : 9787506282963包装: 平装内容简介

本书是一部值得一读的研究生教材,内容主要涉及黎曼几何基本定理的研究,如霍奇定理、rauch比较定理、lyusternik和fet定理调和映射的存在性等。另外,书中还有当代数学研究领域中的最热门论题,有些内容则是首次出现在教科书中。该书适合数学和理论物理专业的研究生、教师和科研人员阅读研究。

目录

1 Differential manifolds

1.A From submanifolds to abstract manifolds

1.A.1 Submanifolds of Euclidean spaces

1.A.2 Abstract manifolds

1.A.3 Smooth maps

1.B The tangent bundle

1.B.1 Tangent space to a submanifold of Rn+k

1.B.2 The manifold of tangent vectors

1.B.3 Vector bundles

1.B.4 Tangent map

1.C Vector fields

1.C.1 Definitions

1.C.2 Another definition for the tangent space

1.C.3 Integral curves and flow of a vector field

1.C.4 Image of a vector field by a diffeomorphism

1.D Baby Lie groups

1.D.1 Definitions

1.D.2 Adjoint representation

1.E Covering maps and fibrations

1.E.1 Covering maps and quotients by a discrete group

1.E.2 Submersions and fibrations

1.E.3 Homogeneous spaces

1.F Tensors

1.F.1 Tensor product(a digest)

1.F.2 Tensor bundles

1.F.3 Operations on tensors

1.F.4 Lie derivatives

1.F.5 Local operators, differential operators

1.F.6 A characterization for tensors

1.G Differential forms

1.G.1 Definitions

1.G.2 Exterior derivative

1.G.3 Volume forms

1.G.4 Integration on an oriented manifold

1.G.5 Haar measure on a Lie group

1.H Partitions of unity

2 Riemannian metrics

2.A Existence theorems and first examples

2.A.1 Basic definitions

2.A.2 Submanifolds of Euclidean or Minkowski spaces

2.A.3 Riemannian submanifolds, Riemannian products

2.A.4 Riemannian covering maps, flat tori

2.A.5 Riemannian submersions, complex projective space

2.A.6 Homogeneous Riemannian spaces

2.B Covariant derivative

2.B.1 Connections

2.B.2 Canonical connection of a Riemannian submanifold

2.B.3 Extension of the covariant derivative to tensors

2.B.4 Covariant derivative along a curve

2.B.5 Parallel transport

2.B.6 A natural metric on the tangent bundle

2.C Geodesics

2.C.1 Definition, first examples

2.C.2 Local existence and uniqueness for geodesics,exponential map

2.C.3 Riemannian manifolds as metric spaces

2.C.4 An invitation to isosystolic inequalities

2.C.5 Complete Riemannian manifolds, Hopf-Rinow theorem.

2.C.6 Geodesics and submersions, geodesics of PnC:

2.C.7 Cut-locus

2.C.8 The geodesic flow

2.D A glance at pseudo-Riemannian manifolds

2.D.1 What remains true?

2.D.2 Space, time and light-like curves

2.D.3 Lorentzian analogs of Euclidean spaces, spheres and hyperbolic spaces

2.D.4 (In)completeness

2.D.5 The Schwarzschild model

2.D.6 Hyperbolicity versus ellipticity

3 Curvature

3.A The curvature tensor

3.A.1 Second covariant derivative

3.A.2 Algebraic properties of the curvature tensor

3.A.3 Computation of curvature: some examples

3.A.4 Ricci curvature, scalar curvature

3.B First and second variation

3.B.1 Technical preliminaries

3.B.2 First variation formula

3.B.3 Second variation formula

3.C Jacobi vector fields

3.C.1 Basic topics about second derivatives

3.C.2 Index form

3.C.3 Jacobi fields and exponential map

3.C.4 Applications

3.D Riemannian submersions and curvature

3.D.1 Riemannian submersions and connections

3.D.2 Jacobi fields of PnC

3.D.3 O'Neill's formula

3.D.4 Curvature and length of small circles.Application to Riemannian submersions

3.E The behavior of length and energy in the neighborhood of a geodesic

3.E.1 Gauss lemma

3.E.2 Conjugate points

3.E.3 Some properties of the cut-locus

3.F Manifolds with constant sectional curvature

3.G Topology and curvature: two basic results

3.G.1 Myers' theorem

3.G.2 Cartan-Hadamard's theorem

3.H Curvature and volume

3.H.1 Densities on a differentiable manifold

3.H.2 Canonical measure of a Riemannian manifold

3.H.3 Examples: spheres, hyperbolic spaces, complex projective spaces

3.H.4 Small balls and scalar curvature

3.H.5 Volume estimates

3.I Curvature and growth of the fundamental group

3.I.1 Growth of finite type groups

3.I.2 Growth of the fundamental group of compact manifolds with negative curvature

3.J Curvature and topology: some important results

3.J.1 Integral formulas

3.J.2 (Geo)metric methods

3.J.3 Analytic methods

3.J.4 Coarse point of view: compactness theorems

3.K Curvature tensors and representations of the orthogonal group

3.K.1 Decomposition of the space of curvature tensors

3.K.2 Conformally flat manifolds

3.K.3 The Second Bianchi identity

3.L Hyperbolic geometry

3.L.1 Introduction

3.L.2 Angles and distances in the hyperbolic plane

3.L.3 Polygons with "many" right angles

3.L.4 Compact surfaces

3.L.5 Hyperbolic trigonometry

3.L.6 Prescribing constant negative curvature

3.L.7 A few words about higher dimension

3.M Conformal geometry

3.M.1 Introduction

3.M.2 The MSbius group

3.M.3 Conformal, elliptic and hyperbolic geometry

4 Analysis on manifolds

4.A Manifolds with boundary

4.A.1 Definition

4.A.2 Stokes theorem and integration by parts

4.B Bishop inequality

4.B.1 Some commutation formulas

4.B.2 Laplacian of the distance function.

4.B.3 Another proof of Bishop's inequality

4.B.4 Heintze-Karcher inequality

4.C Differential forms and cohomology

4.C.1 The de Rham complex

4.C.2 Differential operators and their formal adjoints

4.C.3 The Hodge-de Rham theorem

4.C.4 A second visit to the Bochner method

4.D Basic spectral geometry

4.D.1 The Laplace operator and the wave equation

4.D.2 Statement of basic results on the spectrum

4.E Some examples of spectra

4.E.1 Introduction

4.E.2 The spectrum of flat tori

4.E.3 Spectrum of (Sn,can)

4.F The minimax principle

4.G Eigenvalues estimates

4.G.1 Introduction

4.G.2 Bishop's inequality and coarse estimates

4.0.3 Some consequences of Bishop's theorem

4.G.4 Lower bounds for the first eigenvalue

4.H Paul Levy's isoperimetric inequality

4.H.1 The statement

4.H.2 The proof

5 Riemannian submanifolds

5.A Curvature of submanifolds

5.A.1 Second fundamental form

5.A.2 Curvature of hypersurfaces

5.A.3 Application to explicit computations of curvatures

5.B Curvature and convexity

5.C Minimal surfaces

5.C.1 First results

5.C.2 Surfaces with constant mean curvature

A Some extra problems

B Solutions of exercises

Bibliography

Index

List of figures

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
牛市还在半山腰:布局2008跨年度行情
基本拓扑学(英文版)
代数拓扑(英文版)
经典数学物理(英文版)(第3版)
大偏差技术和应用(英文版)(第2版)
韩国学生汉语学习策略研究
伯格谈共同基金——基金投资者的明智选择
荆楚百处名胜
荆楚百件大事
制度德育论
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有