王朝网络
分享
 
 
 

李群、李代数和表示论

王朝导购·作者佚名
 
李群、李代数和表示论  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,自然科学,数学,代数 数论 组合理论,

作者: (美)布赖恩著

出 版 社: 世界图书出版公司

出版时间: 2007-10-1字数:版次: 1页数: 351印刷时间: 2007/10/01开本:印次: 1纸张: 胶版纸I S B N : 9787506282970包装: 平装内容简介

This book provides an introduction to Lie groups, Lie algebras, and representation theory, aimed at graduate students in mathematics and physics.Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it auseful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus,I neither assume a prior course on differentiable manifolds nor provide a con-densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semisimple groups and Lie algebras bytreating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory.

The standard books on Lie theory begin immediately with the general case:a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time. Furthermore, with this approach, one must either assume the reader is familiar with the theory of differentiable manifolds (which rules out a substantial part of one's audience) or one must spend considerable time at the beginning of the book explaining this theory (in which case, it takes a long time to get to Lie theory proper).

目录

Part I General Theory

Matrix Lie Groups

1.1 Definition of a Matrix Lie Group

1.1.1 Counterexa~ples

1.2 Examples of Matrix Lie Groups

1.2.1 The general linear groups GL(n;R) and GL(n;C)

1.2.2 The special linear groups SL(n; R) and SL(n; C)

1.2.3 The orthogonal and special orthogonal groups, O(n) and SO(n)

1.2.4 The unitary and special unitary groups, U(n) and SU(n)

1.2.5 The complex orthogonal groups, O(n; C) and SO(n; C)

1.2.6 The generalized orthogonal and Lorentz groups

1.2.7 The symplectic groups Sp(n; R), Sp(n;C), and $p(n)

1.2.8 The Heisenberg group H .

1.2.9 The groups R, C*, S1, and Rn

1.2.10 The Euclidean and Poincaxd groups E(n) and P(n; 1)

1.3 Compactness

1.3.1 Examples of compact groups

1.3.2 Examples of noncompa groups

1.4 Connectedness

1.5 Simple Connectedness

1.6 Homomorpliisms and Isomorphisms

1.6.1 Example: SU(2) and S0(3)

1.7 The Polar Decomposition for S[(n; R) and SL(n; C)

1.8 Lie Groups

1.9 Exercises

2 Lie Algebras and the Exponential Mapping

2.1 The Matrix Exponential

2.2 Computing the Exponential of a Matrix

2.2.1 Case 1: X is diagonalizable

2.2.2 Case 2: X is nilpotent

2.2.3 Case 3: X arbitrary

2.3 The Matrix Logarithm

2.4 Further Properties of the Matrix Exponential

2.5 The Lie Algebra of a Matrix Lie Group

2.5.1 Physicists' Convention

2.5.2 The general linear groups

2.5.3 The special linear groups

2.5.4 The unitary groups

2.5.5 The orthogonal groups

2.5.6 The generalized orthogonal groups

2.5.7 The symplectic groups

2.5.8 The Heisenberg group

2.5.9 The Euclidean and Poincar6 groups

2.6 Properties of the Lie Algebra

2.7 The Exponential Mapping

2.8 Lie Algebras

2.8.1 Structure constants

2.8.2 Direct sums

2.9 The Complexification of a Real Lie Algebra

2.10 Exercises

3 The Baker-Campbell-Hausdorff Formula

3.1 The Baker-Campbell-Hausdorff Formula for the Heisenberg Group

3.2 The General Baker-Campbell-Hausdorff Formula

3.3 The Derivative of the Exponential Mapping

3.4 Proof of the Baker-Campbell-Hausdorff Formula

3.5 The Series Form of the Baker-Campbell-Hausdorff Formula

3.6 Group Versus Lie Algebra Homomorphisms

3.7 Covering Groups

3.8 Subgroups and Subalgebras

3.9 Exercises

4 Basic Representation Theory

4.1 Representations

4.2 Why Study Representations?

4.3 Examples of Representations

4.3.1 The standard representation

4.3.2 The trivial representation

4.3.3 The adjoint representation

4.3.4 Some representations of S(,1(2)

4.3.5 Two unitary representations of S0(3)

4.3.6 A unitary representation of the reals

……

Part II Semistmple Theory

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
《希瑞》电影版:宝剑的秘密(DVD)
民间社火脸谱
金钱心理学——为何金钱令人又爱又恨
社区心理学(第3版)
韩汉对照?职场韩国语阅读丛书——职业规划
组合交换代数
数学逻辑智能贴纸游戏书:数学游戏(2-3岁)
与枪无关Ⅱ
生命的繁衍——听爸爸讲宇宙的故事4
贴纸游戏书(数学逻辑智能)(数学思维 2)(6、7岁)
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有