| 订阅 | 在线投稿
分享
 
 
 

有关遗传算法

来源:互联网网民  宽屏版  评论
2008-06-01 01:47:48

遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。这一点体现了自然界中"物竞天择、适者生存"的进化过程。

1962年Holland教授首次提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方面,并奠定了坚实的理论基础。

用遗传算法解决问题时,首先要对待解决问题的模型结构和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。

一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:

(1) 对待解决问题进行编码;

(2) 随机初始化群体X(0):=(x1, x2, … xn);

(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好坏;

(4) 应用选择算子产生中间代Xr(t);

(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限个体的覆盖面,体现全局搜索的思想;

(6) t:=t+1;假如不满足终止条件继续(3)。

GA中最常用的算子有如下几种:

(1) 选择算子(selection/reprodUCtion): 选择算子从群体中按某一概率成对选择个体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulette wheel)模型。

(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。

(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对二值基因链(0,1编码)来说即是取反。

上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度及结果有很大的影响,应视具体问题选取不同的值。

GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继续为我们提供了这一可能。定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TPopulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实例,可以在TSGA类上派生,并定义新的操作。

TPopulation类包含两个重要过程:

FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操作在用户类中实现。

Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好个体fmax、最坏个体fmin等。

SGA的结构及类定义如下(用C++编写):

typedef char ALLELE; // 基因类型

typedef struct{

ALLELE *chrom;

float fitness; // fitness of Chromosome

}INDIVIDUAL; // 个体定义

class TPopulation{ // 群体类定义

public:

int size; // Size of population: n

int lchrom; // Length of chromosome: l

float sumfitness, average;

INDIVIDUAL *fmin, *fmax;

INDIVIDUAL *pop;

TPopulation(int popsize, int strlength);

~TPopulation();

inline INDIVIDUAL &Individual(int i){ return pop[i];};

void FillFitness(); // 评价函数

virtual void Statistics(); // 统计函数

};

class TSGA : public TPopulation{ // TSGA类派生于群体类

public:

float pcross; // Probability of Crossover

float pmutation; // Probability of Mutation

int gen; // Counter of generation

TSGA(int size, int strlength, float pm=0.03, float pc=0.6):

TPopulation(size, strlength)

{gen=0; pcross=pc; pmutation=pm; } ;

virtual INDIVIDUAL& Select();

virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL

&parent2,INDIVIDUAL &child1, INDIVIDUAL &child2);

virtual ALLELE Mutation(ALLELE alleleval);

virtual void Generate(); // 产生新的一代

};

用户GA类定义如下:

class TSGAfit : public TSGA{

public:

TSGAfit(int size,float pm=0.0333,float pc=0.6)

:TSGA(size,24,pm,pc){};

void print();

};

由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=0.6。变异概率太大,会导致不稳定。

 
特别声明:以上内容(如有图片或视频亦包括在内)为网络用户发布,本站仅提供信息存储服务。
 
  遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。这一点体现了自然界中"物竞天择、适者生存"的进化过程。 1962年Holland教授首次提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。 一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行: (1) 对待解决问题进行编码; (2) 随机初始化群体X(0):=(x1, x2, … xn); (3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好坏; (4) 应用选择算子产生中间代Xr(t); (5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限个体的覆盖面,体现全局搜索的思想; (6) t:=t+1;假如不满足终止条件继续(3)。 GA中最常用的算子有如下几种: (1) 选择算子(selection/reprodUCtion): 选择算子从群体中按某一概率成对选择个体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulette wheel)模型。 (2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。 (3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对二值基因链(0,1编码)来说即是取反。 上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度及结果有很大的影响,应视具体问题选取不同的值。 GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继续为我们提供了这一可能。定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TPopulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实例,可以在TSGA类上派生,并定义新的操作。 TPopulation类包含两个重要过程: FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操作在用户类中实现。 Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好个体fmax、最坏个体fmin等。 SGA的结构及类定义如下(用C++编写): typedef char ALLELE; // 基因类型 typedef struct{ ALLELE *chrom; float fitness; // fitness of Chromosome }INDIVIDUAL; // 个体定义 class TPopulation{ // 群体类定义 public: int size; // Size of population: n int lchrom; // Length of chromosome: l float sumfitness, average; INDIVIDUAL *fmin, *fmax; INDIVIDUAL *pop; TPopulation(int popsize, int strlength); ~TPopulation(); inline INDIVIDUAL &Individual(int i){ return pop[i];}; void FillFitness(); // 评价函数 virtual void Statistics(); // 统计函数 }; class TSGA : public TPopulation{ // TSGA类派生于群体类 public: float pcross; // Probability of Crossover float pmutation; // Probability of Mutation int gen; // Counter of generation TSGA(int size, int strlength, float pm=0.03, float pc=0.6): TPopulation(size, strlength) {gen=0; pcross=pc; pmutation=pm; } ; virtual INDIVIDUAL& Select(); virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,INDIVIDUAL &child1, INDIVIDUAL &child2); virtual ALLELE Mutation(ALLELE alleleval); virtual void Generate(); // 产生新的一代 }; 用户GA类定义如下: class TSGAfit : public TSGA{ public: TSGAfit(int size,float pm=0.0333,float pc=0.6) :TSGA(size,24,pm,pc){}; void print(); }; 由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=0.6。变异概率太大,会导致不稳定。
󰈣󰈤
 
 
 
>>返回首页<<
 
 热帖排行
 
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
©2005- 王朝网络 版权所有