cosxcosy=[cos(x+y)+cos(x-y)]/2 这个公式怎么证明???
这是中学的三角问题,但我忘了证明的方法,请指教。谢谢。
可以把等号从右向左证明的
其实右边的那两个余弦都可以拆开成两个部分,这样互相抵消一部分就成了左边的式子cosxcosy=1/2[(cosxcosy-sinxsiny)+(cosxcosy+sinxsiny)]
=[cos(x+y)+cos(x-y)]1/2
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
cos(x+y)=cosxcosy-sinxsiny
[cos(x+y)+cos(x-y)]/2=[cosxcosy-sinxsiny+cosxcosy+sinxsiny]/2=cosxcosy
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
[cos(x+y)+cos(x-y)]/2
=(cosxcosy-sinxsiny+cosxcosy+sinxsiny)/2
=cosxcosy
1/2[cos(x+y)+cos(x-y)]=1/2(cosxcosy -sinxsiny+cosxcosy+sinxsiny)
=cosxcosy