马尔科夫过程导论

王朝导购·作者佚名
 
马尔科夫过程导论  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,自然科学,数学,概率论与数理统计,

作者: (美)丹尼尔斯特鲁克(Strook,D.W)著

出 版 社:

出版时间: 2009-4-1字数:版次: 1页数: 171印刷时间:开本: 24开印次:纸张:I S B N : 9787510004483包装: 平装目录

Preface. .

Chapter 1 Random Walks A Good Place to Begin

1.1.Nearest Neighbor Random Wlalks on Z.

1.1.1.Distribution at Time n

1.1.2.Passage Times via the Reflection Principle.

1.1.3.Some Related Computations

1.1.4.Time of First Return

1.1.5.Passage Times via Functional Equations

1.2.Recurrence Properties of Random Walks

1.2.1.Random Walks on Zd

1.2.2.An Elementary Recurrence Criterion

1.2.3.Recurrence of Symmetric Random Walk in Zz

1.2.4.nansience in Z3

1.3.Exercises

Chapter 2 Doeblin’S Theory for Markov Chains

2.1.Some Generalities

2.1.1.Existence of Markov Chains

2.1.2.Transion Probabilities&Probability Vectors

2.1.3.nansition Probabilities and Functions.

2.1.4.The Markov Property

2.2.Doeblin’S Theory.

2.2.1.Doeblin’S Basic Theorem

2.2.2.A Couple of Extensions

2.3.Elements of Ergodic Theory

2.3.1.The Mean Ergodic Theorem

2.3.2.Return Times

2.3.3.Identification of π

2.4.Exercises

Chapter 3 More about the Ergodic Theory of Markov Chains

3.1.Classification of States

3.1.1.Classification,Recurrence,and Transience

3.1.2.Criteria for Recurrence and Transmnge

3.1.3.Periodicity.

3.2.Ergodic Theory without Doeblin

3.2.1.Convergence of Matrices.

3.2.2.Ab el Convergence

3.2.3.Structure of Stationary Distributions

3.2.4.A Small Improvement

3.2.5.The Mcan Ergodic Theorem Again

3.2.6.A Refinement in The Aperiodic Case

3.2.7.Periodic Structure

3.3.Exercises

Chapter 4 Markov Processes in Continuous Time

4.1.Poisson Processes.

4.1.1.The Simple Poisson Process.

4.1.2.Compound Poisson Processes on Z

4.2.Markov Processes with Bounded Rates

4.2.1.Basic Construction

4.2.2.The Markov Property

4.2.3.The Q—Matrix and Kolmogorov’S Backward Equation.

4.2.4.Kolmogorov’S Forward Equation

4.2.5.Solving Kolmogorov’S Equation

4.2.6.A Markov Process from its Infinitesimal Characteristics

4.3.Unbounded Rates

4.3.1.Explosion

4.3.2.Criteria for Non.explosion or Explosion

4.3.3.What to Do When Explosion Occurs.

4.4.Ergodic Properties.

4.4.1.Classification of States.

4.4.2.Stationary Measures and Limit Theorems

4.4.3.Interpreting πii.

4.5.Exercises

Chapter 5 Reversible Markov Proeesses

5.1.R,eversible Markov Chains

5.1.1.Reversibility from Invariance

5.1.2.Measurements in Quadratic Mean

5.1.3.The Spectral Gap.

5.1.4.Reversibility and Periodicity

5.1.5.Relation to Convergence in Variation

5.2.Dirichlet Forms and Estimation of β

5.2.1.The Dirichlet Form and Poincar4’S Inequality,

5.2.2.Estimating β+

5.2.3.Estimating β-

5.3.Reversible Markov Processes in Continuous Time

5.3.1.Criterion for Reversibility

5.3.2.Convergence in L2(π) for Bounded Rates

5.3.3.L2(π)Convergence Rate in General

……

Chapter 6 Some Mild Measure Theory

Notation

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有