国外数学名著系列(续一)(影印版)39:稀疏线性系统的迭代方法(第二版)

王朝导购·作者佚名
 
国外数学名著系列(续一)(影印版)39:稀疏线性系统的迭代方法(第二版)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,自然科学,数学,计算数学,

作者: (美)萨阿德 著

出 版 社: 科学出版社

出版时间: 2009-1-1字数: 665000版次: 1页数: 528印刷时间: 2009/01/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787030234834包装: 精装编辑推荐

要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。 这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这23本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些也具有交叉性质。 这些书可以使读者较快地了解数学某方面的前沿,对从事这方面研究的数学家了解该领域的前沿与全貌也很有帮助。

内容简介

Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.

This new edition includes a wide range of the best methods available today. The author has added a new chapter on multigrid techniques and has updated material throughout the text, particularly the chapters on sparse matrices, Krylov subspace methods, preconditioning techniques, and parallel preconditioners. Material on older topics has been removed or shortened, numerous exercises have been added, and many typographical errors have been corrected. The updated and expanded bibliography now includes more recent works emphasizing new and important research topics in this field.

This book can be used to teach graduate-level courses on iterative methods for linear systems. Engineers and mathematicians will find its contents easily accessible, and practitioners and educators will value it as a helpful resource. The preface includes syllabi that can be used for either a semester- or quarter-length course in both mathematics and computer science.

目录

Preface to the Second Edition

Preface to the First Edition

1 Background in Linear Algebra

1.1 Matrices

1.2 Square Matrices and Eigenvalues

1.3 Types of Matrices

1.4 Vector Inner Products and Norms

1.5 Matrix Norms

1.6 Subspaces, Range, and Kernel

1.7 Orthogonal Vectors and Subspaces

1.8 Canonical Forms of Matrices

1.8.1 Reduction to the Diagonal Form

1.8.2 The Jordan Canonical Form

1.8.3 The Schur Canonical Form

1.8.4 Application to Powers of Matrices

1.9 Normal and Hermitian Matrices

1.9.1 Normal Matrices

1.9.2 Hermitian Matrices

1.10 Nonnegative Matrices, M-Matrices

1.11 Positive Definite Matrices

1.12 Projection Operators

1.12.1 Range and Null Space of a Projector

1.12.2 Matrix Representations

1.12.3 Orthogonal and Oblique Projectors

1.12.4 Properties of Orthogonal Projectors

1.13 Basic Concepts in Linear Systems

1.13.1 Existence of a Solution

1.13.2 Perturbation Analysis

Exercises

Notes and References

2 Discretization of Partial Differential Equations

2.1 Partial Differential Equations

2.1.1 Elliptic Operators

2.1.2 The Convection Diffusion Equation

2.2 Finite Difference Methods

2.2.1 Basic Approximations

2.2.2 Difference Schemes for the Laplacian Operator

2.2.3 Finite Differences for One-Dimensional Problems

2.2.4 Upwind Schemes

2.2.5 Finite Differences for Two-Dimensional Problems

2.2.6 Fast Poisson Solvers

2.3 The Finite Element Method

2.4 Mesh Generation and Refinement

2.5 Finite Volume Method

Exercises

Notes and References

3 Sparse Matrices

3.1 Introduction

……

4 Basic Iterative Methods

5 Projection Methods

6 Krylov Subspace Methods, Part Ⅰ

7 Krylov Subspace Methods, Part Ⅱ

8 Methods Related to the Normal Equations

9 Preconditioned Iterations

10 Preconditioning Techniques

11 Parallel Implementations

12 Parallel Preconditioners

13 Multigrid Methods

14 Domain Decomposition Methods

Bibliography

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有