Basic principles and applications of probability theory概率论基础原理与应用

王朝导购·作者佚名
 
Basic principles and applications of probability theory概率论基础原理与应用  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,进口原版书,科学与技术 Science & Techology ,

作者: A.V. Skorokhod著

出 版 社: 新世纪出版社

出版时间: 2004-11-1字数:版次:页数: 282印刷时间: 2004/11/01开本: 16开印次:纸张: 胶版纸I S B N : 9783540546863包装: 精装内容简介

The book is an introduction to modern probability theory written by one of the famous experts in this area. Readers will learn about the basic concepts of probability and its applications, preparing them for more advanced and specialized works.

目录

1Introduction

1.1 The Nature of Randomness

1.1.1 Determinism and Chaos

1.1.2 Unpredictability and Randomness

1.1.3 Sources of Randomness

1.1.4 The Role of Chance

1.2 Formalization of Randomness

1.2.1 Selection from Among Several Possibilities. Experiments. Events

1.2.2 Relative Frequencies. Probability as an Ideal Relative Frequency

1.2.3 The Definition of Probability

1.3 Problems of Probability Theory

1.3.1 Probability and Measure Theory

1.3.2 Independence

1.3.3 Asymptotic Behavior of Stochastic Systems

1.3.4 Stochastic Analysis

2Probability Spacer

2.1 Finite Probability Space

2.1.1 Combinatorial Analysis

2.1.2 Conditional Probability

2.1.3 Bernoulli's Scheme. Limit Theorems

2.2 Definition of Probability Space

2.2.1 a-algebras. Probability

2.2.2 Random Variables. Expectation

2.2.3 Conditional Expectation

2.2.4 Regular Conditional Distributions

2.2.5 Spaces of Random Variables. Convergence

2.3 Random Mappings

2.3.1 Random Elements

2.3.2 Random Functions

2.3.3 Random Elements in Linear Spaces

2.4 Construction of Probability Spaces

2.4.1 Finite-dimensional Space

2.4.2 Function Spaces

2.4.3 Linear Topological Spaces. Weak Distributions

2.4.4 The Minlos-Sazonov Theorem

3 Independence

3.1 Independence of a-Algebras

3.1.1 Independent Algebras

3.1.2 Conditions for the Independence of a-Algebras

3.1.3 Infinite Sequences of Independent a-Algebras

3.1.4 Independent Random Variables

3.2 Sequences of Independent Random Variables

3.2.1 Sums of Independent Random Variables

3.2.2 Kolmogorov's Inequality

3.2.3 Convergence of Series of Independent Random Variables

3.2.4 The Strong Law of Large Numbers

3.3 Random Walks

3.3.1 The Renewal Scheme

3.3.2 Recurrency

3.3.3 Ladder Funetionals

3.4 Processes with Independent Increments

3.4.1 Definition

3.4.2 Stochastically Continuous Processes

3.4.3 L6vy's Formula

3.5 Product Measures

3.5.1 Definition

3.5.2 Absolute Continuity and Singularity of Measures

3.5.3 Kakutani's Theorem

3.5.4 Absolute Continuity of Gaussian Product Measures

4General Theory of Stochastic Processes and Random Functions

4.1 Regular Modifications

4.1.1 Separable Random Functions

4.1.2 Continuous Stochastic Processes

4.1.3 Processes With at Most Jump Discontinuities.

4.1.4 Markov Processes

4.2 Measurability

4.2.1 Existence of a Measurable Modification

4.2.2 Mean-Square Integration

4.2.3 Expansion of a Random Function in an Orthogonal Series

……

5 Limit Theorems

Historic and Bibliographic Comments

References

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有