Information Theory & Coding 信息论与编码 (英文版)(21世纪高等院校规划教材)

王朝导购·作者佚名
 
Information Theory & Coding 信息论与编码 (英文版)(21世纪高等院校规划教材)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,计算机/网络,计算机理论,

作者: 梁建武 等编著

出 版 社: 水利水电出版社

出版时间: 2008-7-1字数:版次: 1页数: 196印刷时间:开本: 16开印次:纸张:I S B N : 9787508455693包装: 平装编辑推荐

采用“任务驱动”的编写方式,引入案例和启发式教学方法,提供电子教案、案例素材等教学资源,教材立体化配套,满足高等院校应用型人才培养的需要。

内容简介

本书重点介绍经典信息论的基本理论,并力图将信息论的基本理论和工程应用的编码理论联系起来,介绍一些关于这些理论的实际应用。全书分为7章,内容包括信息度量的基本理论、无失真信源编码、限失真信源编码、信道编码及其应用等。

本书注重基本概念,并且用通俗易懂的语言对它们加以诠释。在当前信息、通信系统飞速发展的大背景下,本书力图用较多的例子和图表来阐述概念和理论,同时尽量避免纠缠于烦琐难懂的公式证明之中。为了加深读者对所讲述知识的理解,每章最后都配有适量的练习。题供读者选用。

本书可作为高等院校电子信息类学生双语教学的教材或参考书,也可作为通信、电信、电子等领域从业人员的参考资料。

目录

Chapter 1 Introduction

Contents

Before it starts, there is something must be known

1.1 What is Information

1.2 What’s Information Theory?

1.2.1 Origin and Development of Information Theory

1.2.2 The application and achievement of Information Theory methods

1.3 Formation and Development of Information Theory

Questions and Exercises

Biography of Claude Elwood Shannon

Chapter 2 Basic Concepts of Information Theory

Contents

Preparation knowledge

2.1 Self-information and conditional self-information

2.1.1 Self-Information

2.1.2 Conditional Self-Information

2.2 Mutual information and conditional mutual information

2.3 Source entropy

2.3.1 Introduction of entropy

2.3.2 Mathematics description of source entropy

2.3.3 Conditional entropy

2.3.4 Union entropy (Communal entropy)

2.3.5 Basic nature and theorem of source entropy

2.4 Average mutual information

2.4.1 Definition

2.4.2 Physics significance of average mutual information

2.4.3 Properties of average mutual information

2.5 Continuous source

2.5.1 Entropy of the continuous source (also called differential entropy)

2.5.2 Mutual information of the continuous random variable

Questions and Exercises

Additional reading materials

Chapter 3 Discrete Source Information

Contents

3.1 Mathematical model and classification of the source

3.2 The discrete source without memory

3.3 Multi-marks discrete steady source

3.4 Source entropy of discrete

4.2.4 Relationship between entropy, channel doubt degree and mutual information

4.3 The discrete channel without memory and its channel capacity

4.4 Channel capacity

4.4.1 Concept of channel capacity

4.4.2 Discrete channel without memory and its channel capacity

4.4.3 Continuous channel and its channel capacity

Chapter 5 kossless source coding

Contents

5.1 Lossless coder

5.2 Lossless source coding

5.2.1 Fixed length coding theorem

5.2.2 Unfixed length source coding

5.3 Lossless source coding theorems

5.3.1 Classification of code and main coding method

5.3.2 Kraft theorem

5.3.3 Lossless unfixed source coding theorem (Shannon First theorem)

5.4 Pragmatic examples of lossless source coding

5.4.1 Huffman coding

5.4.2 Shannon coding and Fano coding

5.5 The Lempel-ziv algorithm

5.6 Run-Length Encoding and the PCX format

Questions and Exercises

Chapter 6 Limited distortion source coding

Contents

6.1 The start point of limit distortion theory

6.2 Distortion measurement

6.2.1 Distortion function

6.2.2 Average distortion

6.3 Information rate distortion function

6.4 Property of R(D)

6.4.1 Minimum of D and R(D)

6.4.2 Dmax and R(Dmax)

6.4.3 The under convex function of R(D)

6.4.4

Questions and exercises

Bibliography

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有