磁性量子理论:材料的磁学性质(第三版)

分类: 图书,自然科学,物理学,电磁学、电动力学,
作者: (英)怀特(White,R.M.) 主编
出 版 社: 科学出版社
出版时间: 2008-2-1字数: 440000版次: 1页数: 359印刷时间: 2008/02/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787030209382包装: 精装编辑推荐
本书从“线性响应”出发研究磁学现象,主要内容是研究磁性材料在磁场作用下是如何响应的。书中不仅介绍了这些新现象,而且详细讨论了新材料(如高温超导材料)的一个重要性质——磁性。本书是一本介绍新材料科学关键性能——磁性的经典著作。
内容简介
本书从“线性响应”出发研究磁学现象。主要内容是研究磁性材料在磁场作用下是如何响应的(磁场可以是均匀的或不均匀的,静止的或变化的)。本书的前两版主要研究了磁性响应,本版中还增加了磁性材料的磁阻抗,同时在每章后还增加了一些习题以帮助读者加深对内容的理解。本书关于磁学基本原理的论述和前两版相比变化不大。随着研究的深入和新应用的发展,新的磁学现象不断涌现,如本书第二版出版以来,发现了巨磁阻效应,自旋电子学的研究队伍也在迅速扩大。本书不仅介绍了这些新现象,而且详细讨论了新材料(如高温超导材料)的一个重要性质——磁性。我们通过测量磁化率,核磁共振,中子散射等手段来研究材料的磁性,这为新材料的研究提供了便利。根据最近的研究成果,本书对一些资料作了重要的修正,也新加入了一些资料(新加入了有关磁性多层薄膜的一章)。本书紧跟学科发展,是一本介绍新材料科学关键性能——磁性的经典著作。
目录
1The Magnetic Susceptibility
1.1The Magnetic Moment
1.2The Magnetization
1.3The Generalized Susceptibility
1.3.1The Kramers-Kronig Relations
1.3.2The Fluctuation-Dissipation Theorem..
1.3.3Onsager Relation
1.4Second Quantization
1.4.1Example:The Degenerate-Electron Gas
1.4.2Example:The Zeeman Interaction
2 The Magnetic Hamiltonian
2.1The Dirac Equation
2.2Sources of Fields
2.2.1Uniform External Field
2.2.2The Electric Quadrupole Field
2.2.3The Magnetic Dipole(Hyperfine)Field.
2.2.4Other Electrons on the Same Ion
2.2.5Crystalline Electric Fields
2.2.6Dipole-Dipole Interaction
2.2.7Direct Exchange
2.2.8Superexchange
2.2.9Molecular Magnets
2.2.10Double Exchange
2.2.11Exchange on a Surface
2.3The Spin Hamiltonian
2.3.1Transition-Metal Ions
2.3.2Rare-Earth Ions
2.3.3Semiconductors
3 The Static Susceptibility of Noninteracting Systems
3.1Localized Moments
3.1.1Diamagnetism
3.1.2Paramagnetism of Transition-Metal Ions
3.1.3Paramagnetism of Rare-Earth Ions
3.2Metals
3.2.1Landau Diamagnetism
3.2.2The de Haas-van Alphen Effect
3.2.3Quantized Hall Conductance
3.2.4Pauli Paramagnetism
3.3Measurement of the Susceptibility
3.4Local Moments in Metals
3.4.1Virtual Bound States
3.4.2Anderson's Theory of Moment Formation
3.4.3The Kondo Effect
4 The Static Susceptibility of Interacting Systems:Local Moments
4.1High Temperatures
4.2Low Temperatures
4.3Temperatures Near Tc
4.4Landau Theory of Second-Order Transitions
4.5Critical Phenomena
4.5.1Order in 2D
4.6Stoner-Wohlfarth Model
4.7Dynamic Coercivity
4.8Magnetic Viscosity
5The Static Susceptibility of Interacting Systems:Metals.
5.1Fermi Liquid Theory
5.2Heavy Fermion Systems
5.3Itinerant Magnetism
5.3.1The Stoner Model
5.3.2The Hubbard Model
6The Dynamic Susceptibility of Weakly Interacting Systems:Local Moments
6.1Equation of Motion
6.2The Bloch Equations
6.3Resonance Line Shape
6.3.1The Method of Moments
6.3.2The Relaxation-Function Method
6.3.3Spin Diffusion
6.4Spin Echoes
6.4.1Measurement of T1
6.4.2Calculation of T1
7The Dynamic Susceptibility of Weakly Interacting Systems:Metals
7.1Paramagnons
7.2Fermi Liquid Theory
7.3Conduction-Electron Spin Resonance
7.4Spin Waves
7.5Local Moments in Metals
7.6Faraday Effect
8The Dynamic Susceptibility of Strongly Interacting Systems
8.1Broken Symmetry
8.2Insulators
8.2.1Spin-Wave Theory
8.2.2Coherent Magnon State
8.2.3Magnetostatic Modes
8.2.4Solitons
8.2.5Thermal Magnon Effects
8.2.6Nonlinear Processes
8.2.7Chaos
8.2.8Optical Processes
8.3High Temperatures
8.4Micromagnetics
8.4.1Magnetic Force Microscope
8.4.2Phenomenological Damping
8.5Metals
9Thin Film Systems
9.1Interfaces
9.1.1Exchange Bias
9.1.2Biquadratic Exchange
9.2Trilayers
9.2.1The RKKY Ineraction
9.2.2Quantum Well Model
9.2.3Giant Magnetoresistance(GMR)
9.2.4Tunneling
9.2.5Spin Transfer
9.2.6Spin Hall Effect
10Neutron Scattering
10.1Neutron Scattering Cross Section
10.2Nuclear Scattering
10.2.1Bragg Scattering
10.2.2Scattering of Phonons
10.3Magnetic Scattering
10.3.1Bragg Scattering
10.3.2Spin Dynamics
10.4Example:Manganese Oxides
10.5Example:Quantum Phase Transitions
References
Index