王朝网络
分享
 
 
 

Morphing Aerospace Vehicles and Structures

王朝导购·作者佚名
 
Morphing Aerospace Vehicles and Structures  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,进口原版,Science(科学),Astronomy(天文学),Aeronautics & Astronautics,
  品牌: John Valasek

基本信息出版社:Wiley; 2 (2012年4月24日)丛书名:Aerospace Series精装:310页正文语种:英语ISBN:0470972866条形码:9780470972861商品尺寸:16.8 x 2.1 x 24.4 cm商品重量:626 gASIN:0470972866商品描述内容简介Morphing Aerospace Vehicles and Structures provides a highly timely presentation of the state-of-the-art, future directions and technical requirements of morphing aircraft. Divided into three sections it addresses morphing aircraft, bio-inspiration, and smart structures with specific focus on the flight control, aerodynamics, bio-mechanics, materials, and structures of these vehicles as well as power requirements and the use of advanced piezo materials and smart actuators. The tutorial approach adopted by the contributors, including underlying concepts and mathematical formulations, unifies the methodologies and tools required to provide practicing engineers and applied researchers with the insight to synthesize morphing air vehicles and morphing structures, as well as offering direction for future research.目录List of Contributors xiiiForeword xvSeries Preface xviiAcknowledgments xix1 Introduction 1

John Valasek1.1 Introduction 11.2 The Early Years: Bio-Inspiration 21.3 The Middle Years: Variable Geometry 51.4 The Later Years: A Return to Bio-Inspiration 91.5 Conclusion 10References 10Part I BIO-INSPIRATION2 Wing Morphing in Insects, Birds and Bats: Mechanism and Function 13

Graham K. Taylor, Anna C. Carruthers, Tatjana Y. Hubel, and Simon M. Walker2.1 Introduction 132.2 Insects 142.2.1 Wing Structure and Mechanism152.2.2 Gross Wing Morphing182.3 Birds 252.3.1 Wing Structure and Mechanism252.3.2 Gross Wing Morphing282.3.3 Local Feather Deflections302.4 Bats 322.4.1 Wing Structure and Mechanism332.4.2 Gross Wing Morphing352.5 Conclusion 37Acknowledgements 37References 383 Bio-Inspiration of Morphing for Micro Air Vehicles 41

Gregg Abate and Wei Shyy3.1 Micro Air Vehicles 413.2 MAV Design Concepts 433.3 Technical Challenges for MAVs 463.4 Flight Characteristics of MAVs and NAVs 473.5 Bio-Inspired Morphing Concepts for MAVs 483.5.1 Wing Planform503.5.2 Airfoil Shape503.5.3 Tail Modulation503.5.4 CG Shifting503.5.5 Flapping Modulation513.6 Outlook for Morphing at the MAV/NAV scale 513.7 Future Challenges 513.8 Conclusion 53References 53Part II CONTROL AND DYNAMICS4 Morphing Unmanned Air Vehicle Intelligent Shape and  Flight Control 57

John Valasek, Kenton Kirkpatrick, and Amanda Lampton4.1 Introduction 574.2 A-RLC Architecture Functionality 584.3 Learning Air Vehicle Shape Changes 594.3.1 Overview of Reinforcement Learning594.3.2 Implementation of Shape Change Learning Agent624.4 Mathematical Modeling of Morphing Air Vehicle 634.4.1 Aerodynamic Modeling634.4.2 Constitutive Equations644.4.3 Model Grid674.4.4 Dynamical Modeling684.4.5 Reference Trajectory714.4.6 Shape Memory Alloy Actuator Dynamics714.4.7 Control Effectors on Morphing Wing734.5 Morphing Control Law 734.5.1 Structured Adaptive Model Inversion (SAMI) Control for Attitude Control734.5.2 Update Laws764.5.3 Stability Analysis774.6 Numerical Examples 774.6.1 Purpose and Scope774.6.2 Example 1: Learning New Major Goals774.6.3 Example 2: Learning New Intermediate Goals804.7 Conclusions 84Acknowledgments 84

References 845 Modeling and Simulation of Morphing Wing Aircraft 87

Borna Obradovic and Kamesh Subbarao5.1 Introduction 875.1.1 Gull-Wing Aircraft875.2 Modeling of Aerodynamics with Morphing 885.2.1 Vortex-Lattice Aerodynamics for Morphing905.2.2 Calculation of Forces and Moments925.2.3 Effect of Gull-Wing Morphing on Aerodynamics925.3 Modeling of Flight Dynamics with Morphing 935.3.1 Overview of Standard Approaches935.3.2 Extended Rigid-Body Dynamics975.3.3 Modeling of Morphing1005.4 Actuator Moments and Power 1055.5 Open-Loop Maneuvers and Effects of Morphing 1095.5.1 Longitudinal Maneuvers1095.5.2 Turn Maneuvers1145.6 Control of Gull-Wing Aircraft using Morphing 1185.6.1 Power-Optimal Stability Augmentation System using Morphing1195.7 Conclusion 123Appendix 123References 1246 Flight Dynamics Modeling of Avian-Inspired Aircraft 127

Jared Grauer and James Hubbard Jr6.1 Introduction 1276.2 Unique Characteristics of Flapping Flight 1296.2.1 Experimental Research Flight Platform1296.2.2 Unsteady Aerodynamics1306.2.3 Configuration-Dependent Mass Distribution1316.2.4 Nonlinear Flight Motions1316.3 Vehicle Equations of Motion 1346.3.1 Conventional Models for Aerospace Vehicles1346.3.2 Multibody Model Configuration1366.3.3 Kinematics1386.3.4 Dynamics1386.4 System Identification 1406.4.1 Coupled Actuator Models1416.4.2 Tail Aerodynamics1436.4.3 Wing Aerodynamics1436.5 Simulation and Feedback Control 1446.6 Conclusion 148References 1487 Flight Dynamics of Morphing Aircraft with Time-Varying Inertias 151

Daniel T. Grant, Stephen Sorley, Animesh Chakravarthy, and Rick Lind7.1 Introduction 1517.2 Aircraft 1527.2.1 Design1527.2.2 Modeling1547.3 Equations of Motion 1567.3.1 Body-Axis States1567.3.2 Influence of Time-Varying Inertias1577.3.3 Nonlinear Equations for Moment1577.3.4 Linearized Equations for Moment1597.3.5 Flight Dynamics1617.4 Time-Varying Poles 1627.4.1 Definition1627.4.2 Discussion1647.4.3 Modal Interpretation1647.5 Flight Dynamics with Time-Varying Morphing 1667.5.1 Morphing1667.5.2 Model1667.5.3 Poles1687.5.4 Modal Interpretation171References 1748 Optimal Trajectory Control of Morphing Aircraft in Perching Maneuvers 177

Adam M. Wickenheiser and Ephrahim Garcia8.1 Introduction 1778.2 Aircraft Description 1798.3 Vehicle Equations of Motion 1818.4 Aerodynamics 1858.5 Trajectory Optimization for Perching 1918.6 Optimization Results 1968.7 Conclusions 202References 202Part III SMART MATERIALS AND STRUCTURES9 Morphing Smart Material Actuator Control Using Reinforcement Learning 207

Kenton Kirkpatrick and John Valasek9.1 Introduction to Smart Materials 2079.1.1 Piezoelectrics2089.1.2 Shape Memory Alloys2089.1.3 Challenges in Controlling Shape Memory Alloys2099.2 Introduction to Reinforcement Learning 2109.2.1 The Reinforcement Learning Problem2109.2.2 Temporal-Difference Methods2119.2.3 Action Selection2139.2.4 Function Approximation2159.3 Smart Material Control as a Reinforcement Learning Problem 2189.3.1 State-Spaces and Action-Spaces for Smart Material Actuators2189.3.2 Function Approximation Selection2209.3.3 Exploiting Action-Value Function for Control2209.4 Example 2219.4.1 Simulation2229.4.2 Experimentation2259.5 Conclusion 228References 22910 Incorporation of Shape Memory Alloy Actuators into Morphing Aerostructures 231

Justin R. Schick, Darren J. Hartl and Dimitris C. Lagoudas10.1 Introduction to Shape Memory Alloys 23110.1.1 Underlying Mechanisms23210.1.2 Unique Engineering Effects23310.1.3 Alternate Shape Memory Alloy Options23710.2 Aerospace Applications of SMAs 23810.2.1 Fixed-Wing Aircraft23910.2.2 Rotorcraft24510.2.3 Spacecraft24610.3 Characterization of SMA Actuators and Analysis of Actuator Systems 24710.3.1 Experimental Techniques and Considerations24810.3.2 Established Analysis Tools25210.4 Conclusion 256References 25611 Hierarchical Control and Planning for Advanced Morphing Systems 261

Mrinal Kumar and Suman Chakravorty11.1 Introduction 26111.1.1 Hierarchical Control Philosophy26211.2 Morphing Dynamics and Performance Maps 26411.2.1 Discretization of Performance Maps via Graphs26511.2.2 Planning on Morphing Graphs27011.3 Application to Advanced Morphing Structures 27111.3.1 Morphing Graph Construction27311.3.2 Introduction to the Kagom´e Truss27511.3.3 Examples of Morphing with the Kagom´e Truss27711.4 Conclusion 279References 27912 A Collective Assessment 281

John Valasek12.1 Looking Around: State-of-the-Art 28112.1.1 Bio-Inspiration28112.1.2 Aerodynamics28112.1.3 Structures28212.1.4 Automatic Control28212.2 Looking Ahead: The Way Forward 28212.2.1 Materials28212.2.2 Propulsion28312.3 Conclusion 283Index 285

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
Effective Teamwork: Practical Lessons from Organizational Research
Supporting Dyslexic Adults in Higher Education and the Workplace
Supporting Dyslexic Adults in Higher Education and the Workplace
Smart Grid: Technology and Applications
Pharmacotherapy of Child and Adolescent Psychiatric Disorders
Cancer Connections: Images Of Hope And Courage Across Canada
A Guide to Academia: Getting into and Surviving Grad School, Postdocs and a Research Job
Nursing the Feline Patient
Coffee: Emerging Health Effects and Disease Prevention
Practical Veterinary Urinalysis
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有