王朝网络
分享
 
 
 

微分方程与数学物理问题

王朝导购·作者佚名
 
微分方程与数学物理问题  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  参考价格: 点此进入淘宝搜索页搜索
  分类: 图书,自然科学,数学,微积分 ,

作者: (瑞典)伊布拉基莫夫 著

出 版 社: 高等教育出版社

出版时间: 2009-8-1字数: 255000版次: 1页数: 348印刷时间: 2009-8-1开本: 16开印次: 1纸张: 胶版纸I S B N : 9787040276039包装: 精装

微分方程与数学物理问题
内容简介

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book -- which aims to present new mathematical curricula based on symmetry and invariance principles -- is tailored to develop analytic skills and "working knowledge" in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses n differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, College de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics. The book can be used as a main textbook by undergraduate and graduate students and university lecturers in applied mathematics, physics and engineering.

微分方程与数学物理问题
目录

Preface

1 Selected topics from analysis

1.1 Elementary mathematics

1.1.1 Numbers, variables and elementary functions

1.1.2 Quadratic and cubic equations

1.1.3 Areas of similar figures. Ellipse as an example

1.1.4 Algebraic curves of the second degree

1.2 Differential and integral calculus

1.2.1 Rules for differentiation

1.2.2 The mean value theorem

1.2.3 Invariance of the differential

1.2.4 Rules for integration

1.2.5 The Taylor series

1.2.6 Complex variables

1.2.7 Approximate representation of functions

1.2.8 Jacobian. Functional independence. Change of variables in multiple integrals

1.2.9 Linear independence of functions. Wronskian

1.2.10 Integration by quadrature

1.2.11 Differential equations for families of curves

1.3 Vector analysis

1.3.1 Vector algebra

1.3.2 Vector functions

1.3.3 Vector fields

1.3.4 Three classical integral theorems

1.3.5 The Laplace equation

1.3.6 Differentiation of determinants

1.4 Notation of differential algebra

1.4.1 Differential variables. Total differentiation

1.4.2 Higher derivatives of the product and of composite functions

1.4.3 Differential functions with several variables

1.4.4 The frame of differential equations

1.4.5 Transformation of derivatives

1.5 Variational calculus

1.5.1 Principle of least action

1.5.2 Euler-Lagrange equations with several variables

Problems to Chapter 1

2 Mathematical models

2.1 Introduction

2.2 Natural phenomena

2.2.1 Population models

2.2.2 Ecology: Radioactive waste products

2.2.3 Kepler's laws. Newton's gravitation law

2.2.4 Free fall of a body near the earth

2.2.5 Meteoroid

2.2.6 A model of rainfall

2.3 Physics and engineering sciences

2.3.1 Newton's model of cooling

2.3.2 Mechanical vibrations. Pendulum

2.3.3 Collapse of driving shafts

2.3.4 The van der Pol equation

2.3.5 Telegraph equation

2.3.6 Electrodynamics

2.3.7 The Dirac equation

2.3.8 Fluid dynamics

2.3.9 The Navier-Stokes equations

2.3.10 A model of an irrigation system

2.3.11 Magnetohydrodynamics

2.4 Diffusion phenomena

2.4.1 Linear heat equation

2.4.2 Nonlinear heat equation

2.4.3 The Burgers and Korteweg-de Vries equations.

2.4.4 Mathematical modelling in finance

2.5 Biomathematics

2.5.1 Smart mushrooms

2.5.2 A tumour growth model

2.6 Wave phenomena

2.6.1 Small vibrations of a string

2.6.2 Vibrating membrane

2.6.3 Minimal surfaces

2.6.4 Vibrating slender rods and plates

2.6.5 Nonlinear waves

2.6.6 The Chaplygin and Tricomi equations

Problems to Chapter 2

3 Ordinary differential equations: Traditional approach

3.1 Introduction and elementary methods

3.1.1 Differential equations. Initial value problem

3.1.2 Integration of the equation y(n) = f(x)

3.1.3 Homogeneous equations

3.1.4 Different types of homogeneity

3.1.5 Reduction of order

3.1.6 Linearization through differentiation

3.2 First-order equations

3.2.1 Separable equations

3.2.2 Exact equations

3.2.3 Integrating factor (A. Clairaut, 1739)

3.2.4 The Riccati equation

3.2.5 The Bernoulli equation

3.2.6 Homogeneous linear equations

3.2.7 Non-homogeneous linear equations. Variation of the parameter

3.3 Second-order linear equations

3.3.1 Homogeneous equation: Superposition

3.3.2 Homogeneous equation: Equivalence properties

3.3.3 Homogeneous equation: Constant coefficients

3.3.4 Non-homogeneous equation: Variation of parameters

3.3.5 Bessel's equation and the Bessel functions

3.3.6 Hypergeometric equation

3.4 Higher-order linear equations

3.4.1 Homogeneous equations. Fundamental system

3.4.2 Non-homogeneous equations. Variation of parameters

3.4.3 Equations with constant coefficients

3.4.4 Euler's equation

3.5 Systems of first-order equations

3.5.1 General properties of systems

3.5.2 First integrals

3.5.3 Linear systems with constant coefficients

3.5.4 Variation of parameters for systems

Problems to Chapter 3

4 First-order partial differential equations

4.1 Introduction

4.2 Homogeneous linear equation

4.3 Particular solutions of non-homogeneous equations

4.4 Quasi-linear equations

4.5 Systems of homogeneous equations

Problems to Chapter 4

5 Linear partial differential equations of the second order

5.1 Equations with several variables

5.1.1 Classification at a fixed point

5.1.2 Adjoint linear differential operators

5.2 Classification of equations in two independent variables

5.2.1 Characteristics. Three types of equations

5.2.2 The standard form of the hyperbolic equations

5.2.3 The standard form of the parabolic equations

5.2.4 The standard form of the elliptic equations

5.2.5 Equations of a mixed type

5.2.6 The type of nonlinear equations

5.3 Integration of hyperbolic equations in two variables

5.3.1 d'Alembert's solution

5.3.2 Equations reducible to the wave equation

5.3.3 Euler's method

5.3.4 Laplace's cascade method

5.4 The initial value problem

5.4.1 The wave equation

5.4.2 Non-homogeneous wave equation

5.5 Mixed problem. Separation of variables

5.5.1 Vibration of a string tied at its ends

5.5.2 Mixed problem for the heat equation

Problems to Chapter 5

6 Nonlinear ordinary differential equations

6.1 Introduction

6.2 Transformation groups

6.2.1 One-parameter groups on the plane

6.2.2 Group generator and the Lie equations

6.2.3 Exponential map

6.2.4 Invariants and invariant equations

6.2.5 Canonical variables

6.3 Symmetries of first-order equations

6.3.1 First prolongation of group generators

6.3.2 Symmetry group: definition and main property

6.3.3 Equations with a given symmetry

6.4 Integration of first-order equations using symmetries

6.4.1 Lie's integrating factor

6.4.2 Integration using canonical variables

6.4.3 Invariant solutions

6.4.4 General solution provided by invariant solutions

6.5 Second-order equations

6.5.1 Second prolongation of group generators Calculation of symmetries

6.5.2 Lie algebras

6.5.3 Standard forms of two-dimensional Lie algebras

6.5.4 Lie's integration method

6.5.5 Integration of linear equations with a known particular solution

6.5.6 Lie's linearization test

6.6 Higher-order equations

6.6.1 Invariant solutions. Derivation of Euler's ansatz

6.6.2 Integrating factor (N.H. Ibragimov, 2006)

6.6.3 Linearization of third-order equations

6.7 Nonlinear superposition

6.7.1 Introduction

6.7.2 Main theorem on nonlinear superposition

6.7.3 Examples of nonlinear superposition

6.7.4 Integration of systems using nonlinear superposition

Problems to Chapter 6

7 Nonlinear partial differential equations

7.1 Symmetries

7.1.1 Definition and calculation of symmetry groups

7.1.2 Group transformations of solutions

7.2 Group invariant solutions

7.2.1 Introduction

7.2.2 The Burgers equation

7.2.3 A nonlinear boundary-value problem

7.2.4 Invariant solutions for an irrigation system

7.2.5 Invariant solutions for a tumour growth model

7.2.6 An example from nonlinear optics

7.3 Invariance and conservation laws

7.3.1 Introduction

7.3.2 Preliminaries

7.3.3 Noether's theorem

7.3.4 Higher-order Lagrangians

7.3.5 Conservation theorems for ODEs

7.3.6 Generalization of Noether's theorem

7.3.7 Examples from classical mechanics

7.3.8 Derivation of Einstein's formula for energy

7.3.9 Conservation laws for the Dirac equations

Problems to Chapter 7

8 Generalized functions or distributions

8.1 Introduction of generalized functions

8.1.1 Heuristic considerations

8.1.2 Definition and examples of distributions

8.1.3 Representations of the δ-function as a limit

8.2 Operations with distributions

8.2.1 Multiplication by a function

8.2.2 Differentiation

8.2.3 Direct product of distributions

8.2.4 Convolution

8.3 The distribution △(r2-n)

8.3.1 The mean value over the sphere

8.3.2 Solution of the Laplace equation △v(r)=0

8.3.3 Evaluation of the distribution △(r2-n)

8.4 Transformations of distributions

8.4.1 Motivation by linear transformations

8.4.2 Change of variables in the d-function

8.4.3 Arbitrary group transformations

8.4.4 Infinitesimal transformation of distributions

Problems to Chapter 8

9 Invariance principle and fundamental solutions

9.1 Introduction

9.2 The invariance principle

9.2.1 Formulation of the invariance principle

9.2.2 Fundamental solution of linear equations with constant coefficients

9.2.3 Application to the Laplace equation

9.2.4 Application to the heat equation

9.3 Cauchy's problem for the heat equation

9.3.1 Fundamental solution for the Cauchy problem

9.3.2 Derivation of the fundamental solution for the Cauchy problem from the invariance principle

9.3.3 Solution of the Cauchy problem

9.4 Wave equation

9.4.1 Preliminaries on differential forms

9.4.2 Auxiliary equations with distributions

9.4.3 Symmetries and definition of fundamental solutions for the wave equation

9.4.4 Derivation of the fundamental solution

9.4.5 Solution of the Cauchy problem

9.5 Equations with variable coefficients

Problems to Chapter 9

Answers

Bibliography

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
>>返回首页<<
推荐阅读
 
 
频道精选
 
更多商品
图说西游:美猴王21-30(美绘本)(全十册)
未来的金钥匙
图说历史课程标准:高中必修(附光盘)
图解基础汉语语法
外国人汉语发音训练(附光盘)
微分学
统计物理学II:凝聚态理论
问题饮酒咨询
拓扑学教程-拓扑空间和距离空间、数值函数、拓扑向量空间
文化素质教育论
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有