《李群》(Lie Groups)(Daniel Bump)英文影印版

王朝简介·作者佚名  2009-11-01  
宽屏版  字体: |||超大  
 说明  因可能的版权问题本站不提供该资源的存贮、播放、下载或推送,本文仅为内容简介。

中文名: 李群

原名: Lie Groups

作者: Daniel Bump

图书分类: 教育/科技

版本: 英文影印版

出版社: 世界图书出版公司

书号: 9787510005008

发行时间: 2009年

地区: 大陆

语言: 英文

简介:

李群 (英文版)(Lie Groups)

基本信息

·出版社:世界图书出版公司

·页码:451 页

·出版日期:2009年08月

·ISBN:9787510005008

·条形码:9787510005008

·包装版本:第1版

·装帧:平装

·开本:24

·正文语种:英语

·外文书名:Lie Groups

扫描分辨率:600 dpi; 467s

内容简介

Part I covers standard general properties of representations of compactgroups (including Lie groups and other compact groups, such as finite or p-adie ones). These include Schur orthogonality, properties of matrix coefficientsand the Peter-Weyl Theorem.

Part II covers the fundamentals of Lie gronps, by which I mean those sub-jects that I think are most urgent for the student to learn. These include thefollowing topics for compact groups: the fundamental group, the conjngacyof maximal tori (two proofs), and the Weyl character formula. For noncom-pact groups, we start with complex analytic groups that are obtained bycomplexification of compact Lie groups, obtaining the lwasawa and Bruhatdecompositions. These arc the reductive complex groups. They are of course aspecial case, bnt a good place to start in the noncompact world. More generalnoncompact Lie groups with a Cartan decomposition are studied in the lastfew chapters of Part II. Chapter 31, on symmetric spaces, alternates exampleswith theory, discussing the embedding of a noncompact symmetric space inits compact dnal, the boundary components and Bergman-Shilov boundaryof a symmetric tube domain, anti Cartan's classification. Chapter 32 con-structs the relative root system, explains Satake diagrams and gives examplesillustrating the various phenomena that can occur, and reproves the Iwasawadecomposition, formerly obtained for complex analytic groups, in this moregeneral context. Finally, Chapter 33 surveys the different ways Lie groups canbe embedded in oue another.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有