Mp3方面的c语言源程序

王朝c/c++·作者佚名  2006-01-09
宽屏版  字体: |||超大  

/* Fast Inverse DCT implemented using Lee's algorithm */

/* Bjorn Wesen 1997 */

#include "mp3dec.h"

/*

The DCT matrix for N values is defined as:

D(i,j) = cos((2*j+1)*i*PI/(2*N))

Lee's fast-DCT algorithm, as used here, needs an 8-value DCT

and an 16-value DCT matrix.

*/

#ifdef USE_DATA

#include "fastsb_A8.h"

#include "fastsb_B8.h"

#include "fastsb_B16.h"

#else

static mpfloat A16[16][16], A8[8][8]; /* DCT matrix */

static mpfloat G16[16][16], G8[8][8]; /* Output butterfly */

static mpfloat H16[16][16], H8[8][8]; /* Scaling */

static mpfloat B16[16][16], B8[8][8]; /* B = G * DCT * H */

#if 0

static mpfloat A32[32][32];

#endif

void matrix_mul16(mpfloat in1[16][16],

mpfloat in2[16][16],

mpfloat out[16][16]);

void matrix_mul8(mpfloat in1[8][8],

mpfloat in2[8][8],

mpfloat out[8][8]);

void

fast_idct_init()

{

int i,j;

mpfloat t16[16][16], t8[8][8];

#if 0

for(i = 0; i < 32; i++)

for(j = 0; j < 32; j++)

A32[i][j] = cos((2*j+1)*i*PI/64);

#endif

/* create the 16 matrixes */

for(i = 0; i < 16; i++) {

for(j = 0; j < 16; j++) {

A16[i][j] = cos((2*j+1)*i*PI/32);

if(i == j || j == (i + 1))

G16[i][j] = 1.0f;

else

G16[i][j] = 0.0f;

if(i == j)

H16[i][j] = 1.0f/(2*cos((2*i+1)*PI/64));

else

H16[i][j] = 0.0;

}

}

/* create the 8 matrixes */

for(i = 0; i < 8; i++) {

for(j = 0; j < 8; j++) {

A8[i][j] = cos((2*j+1)*i*PI/16);

if(i == j || j == (i + 1))

G8[i][j] = 1.0f;

else

G8[i][j] = 0.0f;

if(i == j)

H8[i][j] = 1.0f/(2*cos((2*i+1)*PI/32));

else

H8[i][j] = 0.0f;

}

}

/* generate the B matrixes */

matrix_mul16(A16, H16, t16);

matrix_mul16(G16, t16, B16);

matrix_mul8(A8, H8, t8);

matrix_mul8(G8, t8, B8);

#ifdef MAKE_DATA

make_data_file_2d("fastsb_A8.h", "A8", &A8[0][0], 8, 8);

make_data_file_2d("fastsb_B8.h", "B8", &B8[0][0], 8, 8);

make_data_file_2d("fastsb_B16.h", "B16", &B16[0][0], 16, 16);

#endif

}

#endif

/* This is a two-level implementation of Lee's fast-DCT algorithm */

/*

The 32 input values are split in two 16-value vectors using an

even butterfly and an odd butterfly. The odd values are taken

through Lee's odd path using a 16x16 DCT matrix (A16) and appropriate

scaling (G16*A16*H16). The even values are further split into

two 8-value vectors using even and odd butterflies into ee and eo.

The ee values are fed through an 8x8 DCT matrix (A8) while the eo

values are fed through the odd path using G8*A8*H8.

This two-level configuration uses 384 muls and 432 adds, compared

to the direct 32x32 DCT which uses 1024 muls and 992 adds.

*/

#ifndef USE_C3X_ASM

void

fast_idct(mpfloat *in, mpfloat *out)

{

mpfloat even[16], odd[16], ee[8], eo[8];

mpfloat s1, s2;

mpfloat t[32];

int i, j;

#if 0

/* direct 32x32 idct */

for(i = 0; i < 32; i++) {

s1 = 0.0;

for(j = 0; j < 32; j++)

s1 += in[j] * A32[i][j];

t[i] = s1;

}

#endif

/* input butterflies - level 1 */

/* 32 adds */

for(i = 0; i < 16; i++) {

even[i] = in[i] + in[31-i];

odd[i] = in[i] - in[31-i];

}

/* input butterflies - level 2 */

/* 16 adds */

for(i = 0; i < 8; i++) {

ee[i] = even[i] + even[15-i];

eo[i] = even[i] - even[15-i];

}

/* multiply the even_even vector (ee) with the ee matrix (A8) */

/* multiply the even_odd vector (eo) with the eo matrix (B8) */

/* 128 muls, 128 adds */

for(i = 0; i < 8; i++) {

s1 = 0.0;

s2 = 0.0;

for(j = 0; j < 8; j += 2) {

s1 += A8[i][j] * ee[j] +

A8[i][j+1] * ee[j+1];

s2 += B8[i][j] * eo[j] +

B8[i][j+1] * eo[j+1];

}

ISCALE(s1);

t[i*4] = s1;

ISCALE(s2);

t[i*4+2] = s2;

}

#if 0

/* multiply the even vector (even) with the even matrix (A16) */

/* JUST FOR TESTING if we only want to use a 1-level Lee */

for(i = 0; i < 16; i++) {

s1 = 0.0;

for(j = 0; j < 16; j++) {

s1 += A16[i][j] * even[j];

}

ISCALE(s1);

t[i*2] = s1;

}

#endif

/* multiply the odd vector (odd) with the odd matrix (B16) */

/* 256 muls, 256 adds */

for(i = 0; i < 16; i++) {

s1 = 0.0;

for(j = 0; j < 16; j += 4) {

s1 += B16[i][j] * odd[j] +

B16[i][j+1] * odd[j+1] +

B16[i][j+2] * odd[j+2] +

B16[i][j+3] * odd[j+3];

}

ISCALE(s1);

t[i*2+1] = s1;

}

/* the output vector t now is expanded to 64 values using the

symmetric property of the cosinus function */

for(i = 0; i < 16; i++) {

out[i] = t[i+16];

out[i+17] = -t[31-i];

out[i+32] = -t[16-i];

out[i+48] = -t[i];

}

out[16] = 0.0;

}

#endif

#ifndef USE_DATA

void matrix_mul16(mpfloat in1[16][16],

mpfloat in2[16][16],

mpfloat out[16][16])

{

int i,j,z;

for(i = 0; i < 16; i++) {

for(j = 0; j < 16; j++) {

out[i][j] = 0.0;

for(z = 0; z < 16; z++)

out[i][j] += in1[i][z] * in2[z][j];

ISCALE(out[i][j]);

}

}

}

void matrix_mul8(mpfloat in1[8][8],

mpfloat in2[8][8],

mpfloat out[8][8])

{

int i,j,z;

for(i = 0; i < 8; i++) {

for(j = 0; j < 8; j++) {

out[i][j] = 0.0;

for(z = 0; z < 8; z++)

out[i][j] += in1[i][z] * in2[z][j];

ISCALE(out[i][j]);

}

}

}

#endif

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有