class Prime

王朝java/jsp·作者佚名  2006-01-09
宽屏版  字体: |||超大  

import java.util.Vector;

/**

* This class implements the Lucas prime number test.

*

* Lucas test:

* A number p>1 is prime, if a number r exists, with 1<r<p, and conditions

* 1) r^(p-1) mod p = 1

* 2) for all prime factors q of p-1 is: r^((p-1)/q) mod p <> 1.

* are met.

*

* @author Holger Schmid

* @version 07.01.2000

*/

class Prime

{

int p; // number to test

boolean isPrime = false; // test result

Vector rList = new Vector(); // list of all r, that meet condition 1)

Vector qList = new Vector(); // prime factors of p-1

/** Constructs a new <code>number</code> and test if it's prime.

* @param number the number to test

*/

public Prime(int number)

{

p=number;

LucasFindR();

PFZ();

LucasTestFast();

return;

}

/** Returns if this number is prime.

* @return result of prime test

*/

public boolean isPrime()

{

return isPrime;

}

/** Returns all prime factors of p-1

* @return list of prime factors

*/

public Vector getQList()

{

return qList;

}

/** Returns all r, that meet condition 1)

* @return list of r

*/

public Vector getRList()

{

return rList;

}

/** Executes a full Lucas test.

* @return list of results for output purpose (one list of all q for each r)

*/

public Vector LucasComplete()

{

Vector Result = new Vector();

int i, j, q, r;

q=0;

for (i=0; i<rList.size(); i++)

{// test all r

Result.addElement(new Vector());

r = ((Integer)rList.elementAt(i)).intValue();

for (j=0; j<qList.size(); j++)

{// and all q

q=((Integer)qList.elementAt(j)).intValue();

if (Formel(r,(p-1)/q,p)==1)

{// condition 2) is not met

((Vector)Result.lastElement()).addElement("-");

}

else

{// condition 2) is met

((Vector)Result.lastElement()).addElement("+");

}

}

}

return Result;

}

/** Finds all r that meet condition 1)

* @return list of r, that meet condition 1)

*/

public Vector LucasFindR()

{

int r;

for (r=2; r<p; r++)

{// test all possible r with 1<r<p

if (Bedingung1(r))

{

rList.addElement(new Integer(r));

}

}

return rList;

}

/** Compute all prime factors q of p-1

* @return list of prime factors

*/

public Vector PFZ()

{

qList = PFZ(p-1);

return qList;

}

/** Executes a fast Lucas test. Only the result p is (not) prime is stored.

*/

private void LucasTestFast()

{

int r;

for (r=2; r<p; r++)

{// test all possible r with 1<r<p

if (Bedingung1(r))

{// check condition 2) only if condition 1) is met

if (Bedingung2(r))

{// p is prime

isPrime=true;

return;

}

}

else

{// abort test, because condition one is not met

return;

}

}

return;

}

/** Check condition 1)

* @return true if condition is met

*/

private boolean Bedingung1(int r)

{

if (Formel(r,p-1,p)==1)

return true;

else

return false;

}

/** Check condition 2)

* @return true if condition is met

*/

private boolean Bedingung2(int r)

{

int i, q=0;

for (i=0; i<qList.size(); i++)

{// test condition 2) for all q

if (q!=((Integer)qList.elementAt(i)).intValue())

{// test only if new prime factor

q=((Integer)qList.elementAt(i)).intValue();

if (Formel(r,(p-1)/q,p)==1)

return false;

}

}

return true;

}

/** Compute all prime factors of <code>x</code>

* @return list of prime factors

*/

private Vector PFZ(int x)

{

int q;

Vector PFTemp = new Vector(10);

for (q=2; q*q<=x; q++)

{// test all possible factors

if (x%q == 0)

{// q is prime factor of x

PFTemp.addElement(new Integer(q));

// eliminate this factor

x/=q;

q--;

}

}

PFTemp.addElement(new Integer(x));

return PFTemp;

}

/** Compute <code>(a^b)%p</code>

* @param a value for formula

* @param b value for formula

* @param p value for formula

*/

int Formel(int a, int b, int c)

{

int k, bitmask, d, i;

k=30; bitmask=0x40000000;

d=1;

for (i=k;i>=0;i--)

{

d = (d*d)%c;

if ((b & bitmask) > 0)

{

d=(d*a)%c;

}

bitmask /= 2;

}

return (d);

}

}

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有