龙格-库塔方法

王朝网络·vc·作者佚名  2006-01-09
宽屏版  字体: |||超大  

#include<stdlib.h>

#include<stdio.h>

/*n表示几等分,n+1表示他输出的个数*/

int RungeKutta(double y0,double a,double b,int n,double *x,double *y,int style,double (*function)(double,double))

{

double h=(b-a)/n,k1,k2,k3,k4;

int i;

// x=(double*)malloc((n+1)*sizeof(double));

// y=(double*)malloc((n+1)*sizeof(double));

x[0]=a;

y[0]=y0;

switch(style)

{

case 2:

for(i=0;i<n;i++)

{

x[i+1]=x[i]+h;

k1=function(x[i],y[i]);

k2=function(x[i]+h/2,y[i]+h*k1/2);

y[i+1]=y[i]+h*k2;

}

break;

case 3:

for(i=0;i<n;i++)

{

x[i+1]=x[i]+h;

k1=function(x[i],y[i]);

k2=function(x[i]+h/2,y[i]+h*k1/2);

k3=function(x[i]+h,y[i]-h*k1+2*h*k2);

y[i+1]=y[i]+h*(k1+4*k2+k3)/6;

}

break;

case 4:

for(i=0;i<n;i++)

{

x[i+1]=x[i]+h;

k1=function(x[i],y[i]);

k2=function(x[i]+h/2,y[i]+h*k1/2);

k3=function(x[i]+h/2,y[i]+h*k2/2);

k4=function(x[i]+h,y[i]+h*k3);

y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;

}

break;

default:

return 0;

}

return 1;

}

double function(double x,double y)

{

return y-2*x/y;

}

//例子求y'=y-2*x/y(0<x<1);y0=1;

/*

int main()

{

double x[6],y[6];

printf("用二阶龙格-库塔方法\n");

RungeKutta(1,0,1,5,x,y,2,function);

for(int i=0;i<6;i++)

printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);

printf("用三阶龙格-库塔方法\n");

RungeKutta(1,0,1,5,x,y,3,function);

for(i=0;i<6;i++)

printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);

printf("用四阶龙格-库塔方法\n");

RungeKutta(1,0,1,5,x,y,4,function);

for(i=0;i<6;i++)

printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);

return 1;

}

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
© 2005- 王朝网络 版权所有