| 订阅 | 在线投稿
分享
 
 
当前位置: 王朝网络 >> 科普 >> 妙手偶得的碳纳米管物理分离法
 

妙手偶得的碳纳米管物理分离法

2008-12-23 08:14:07 编辑來源:互联网 繁體版 评论
 
 
  一位小朋友摸到静电球的球壳,头发立刻像刺猬般根根直竖,这是科技馆里很常见的场景。如果一个碳纳米管束被人为附加上足够的电荷,又会是怎样一幅景象呢?

  

  当碳纳米管束带的电荷达到一定程度时,在电子显微镜下,它会形成一种独特、新奇的像树一样的放射状格局。不仅如此,这些呈树枝状分离的碳纳米管还具有较小的直径(3纳米),有的甚至是单根的碳纳米管。这是国家纳米科学中心研究员孙连峰与中国科学院物理所解思深院士等人合作研究的最新成果。这项工作得到了国家自然科学基金和中国科学院“百人计划”等的资助。相关成果发表在最新一期的《纳米快报》上。

  

  遭遇瓶颈的化学分离方法

  

  单壁碳纳米管是一种具有战略意义的新兴材料,它在复合材料、平板显示器、真空电子器材、生物探测器、抗电磁干扰材料等方面有广泛的应用。

  

  目前,科研人员已经能够根据需要大量制备单壁碳纳米管。“但是,由于单壁碳纳米管结构独特,性质奇异,管与管之间存在比较大的相互吸引力,科学家所制备的碳纳米管往往相互纠缠,形成碳纳米管束。”孙连峰说,“如果不能有效地分离出单根碳纳米管,就意味着无法对单根碳纳米管器件的制备及其物理特性展开相关研究。因此,如何将碳纳米管分离是需要研究解决的重要问题。”

  

  电泳分离法和层离法是现在最常用的碳纳米管束分离方法。孙连峰指出,这些现在常用的分离方法大多是化学方法。这些方法往往涉及到多种化学试剂(如表面活性剂)的使用,并且需要经过多步物理、化学过程才能完成。这些化学方法虽然可以有效地分离出单根碳纳米管,但由于存在掺杂效应,可能改变了碳纳米管本身的固有性质,而且得到的单壁管长度也大都不理想。

  

  比如说,电泳分离法就首先要使用表面活性剂对碳纳米管束进行处理,然后使用超声波冲击,最后在电泳池里分离。“这就产生了许多问题,碳纳米管有可能吸附表面活性剂分子从而改变自身的物理特性,从而使原来呈现的金属性或者是半导体性发生改变;另外,超生波的冲击还可能会破坏碳纳米管的结构,即便最后能够获得结构完整的管,一般来说长度也只有200纳米左右。”孙连峰说,“这给后续研究造成了诸多不便。因此,探索全新的、避免化学修饰的分离方法,是单壁碳纳米管以及器件研究的一个重要问题。”

  

  意外发现的物理分离方法

  

  “发现静电对碳纳米管束的分离作用纯属偶然。”孙连峰笑道,“一开始我们并没有计划要用电流来分离碳纳米管束,只是进行另一个实验的时候,意外发现了当碳纳米管束带有大量电荷的时候会产生‘爆炸’现象。”

  

  这种碳纳米管束意外分离的现象当然引起了他们的关注,为了寻找“爆炸”的原因,他们进行了大量实验。

  

  孙连峰解释说:“这种分离方法实际上利用的是最基本的同种电荷相互排斥的原理,让一束单壁碳纳米管带上同种电荷,当电荷之间的排斥力大于管之间的相互吸引力时,‘爆炸’就发生了。”

  

  孙连峰把这种全新的碳纳米管物理分离方法命名为库仑爆炸法。相互分离的碳纳米管形成的那种独特、新奇的放射状格局,非常类似于科技馆里小朋友触摸静电球后怒发冲冠的样子,于是它被称为“纳米树”(nanotree)。纳米树的树枝大小和长度不一,有的树枝可能就是单根的单壁碳纳米管,长度则可以达到5微米以上。

  

  为了确认库仑爆炸法并没有破坏分离后的碳纳米管的结构,孙连峰研究组进行了大量的验证工作。

  

  通过原子力显微镜(AFM)、拉曼光谱(Raman)等实验证明,库仑爆炸法并不会破坏碳纳米管本身的结构。

  

  另外,孙连峰研究组还利用碳纳米管均匀带电模型,对发生库仑爆炸所需的理论电压进行了计算,结果与实验数值十分接近。

  

  不过,孙连峰对库仑爆炸法还是表示了谨慎的乐观。他指出,由于用于分离的碳纳米管束形状和结构不一,库仑爆炸法的可控性还不是很理想。

  

  接下来,孙连峰准备在库仑爆炸法分离出来的纳米树上,测试单壁碳纳米管的物理特性,以及分离后单壁碳纳米管加上电极后会有什么有趣的事情发生。

  

  “虽然每个纳米树的形状可能都不一样,但如果只是选取一个三端或者是四端结构的话,实际上我们已经制备出了多端器件的雏形,希望我们接下来的工作能够将多端器件研究向前推进一大步。”孙连峰说。

  (来源:科学网)
 
 
 
 
上一篇《新科学家:艾滋病发展速率与个体DNA有关》
下一篇《英国首例被剔除乳癌基因的女婴即将出生》
 
 
 
 
 
 
 
 
 
日版宠物情人插曲《Winding Road》歌词

日版宠物情人2017的插曲,很带节奏感,日语的,女生唱的。 最后听见是在第8集的时候女主手割伤了,然后男主用嘴帮她吸了一下,插曲就出来了。 歌手:Def...

兄弟共妻,我成了他们夜里的美食

老钟家的两个儿子很特别,就是跟其他的人不太一样,魔一般的执着。兄弟俩都到了要结婚的年龄了,不管自家老爹怎么磨破嘴皮子,兄弟俩说不娶就不娶,老父母为兄弟两操碎了心...

如何磨出破洞牛仔裤?牛仔裤怎么剪破洞?

把牛仔裤磨出有线的破洞 1、具体工具就是磨脚石,下面垫一个硬物,然后用磨脚石一直磨一直磨,到把那块磨薄了,用手撕开就好了。出来的洞啊很自然的。需要猫须的话调几...

我就是扫描下图得到了敬业福和爱国福

先来看下敬业福和爱国福 今年春节,支付宝再次推出了“五福红包”活动,表示要“把欠大家的敬业福都还给大家”。 今天该活动正式启动,和去年一样,需要收集“五福”...

冰箱异味产生的原因和臭味去除的方法

有时候我们打开冰箱就会闻到一股异味,冰箱里的这种异味是因为一些物质发出的气味的混合体,闻起来让人恶心。 产生这些异味的主要原因有以下几点。 1、很多人有这种习...

 
 
 
  一位小朋友摸到静电球的球壳,头发立刻像刺猬般根根直竖,这是科技馆里很常见的场景。如果一个碳纳米管束被人为附加上足够的电荷,又会是怎样一幅景象呢?   当碳纳米管束带的电荷达到一定程度时,在电子显微镜下,它会形成一种独特、新奇的像树一样的放射状格局。不仅如此,这些呈树枝状分离的碳纳米管还具有较小的直径(3纳米),有的甚至是单根的碳纳米管。这是国家纳米科学中心研究员孙连峰与中国科学院物理所解思深院士等人合作研究的最新成果。这项工作得到了国家自然科学基金和中国科学院“百人计划”等的资助。相关成果发表在最新一期的《纳米快报》上。   遭遇瓶颈的化学分离方法   单壁碳纳米管是一种具有战略意义的新兴材料,它在复合材料、平板显示器、真空电子器材、生物探测器、抗电磁干扰材料等方面有广泛的应用。   目前,科研人员已经能够根据需要大量制备单壁碳纳米管。“但是,由于单壁碳纳米管结构独特,性质奇异,管与管之间存在比较大的相互吸引力,科学家所制备的碳纳米管往往相互纠缠,形成碳纳米管束。”孙连峰说,“如果不能有效地分离出单根碳纳米管,就意味着无法对单根碳纳米管器件的制备及其物理特性展开相关研究。因此,如何将碳纳米管分离是需要研究解决的重要问题。”   电泳分离法和层离法是现在最常用的碳纳米管束分离方法。孙连峰指出,这些现在常用的分离方法大多是化学方法。这些方法往往涉及到多种化学试剂(如表面活性剂)的使用,并且需要经过多步物理、化学过程才能完成。这些化学方法虽然可以有效地分离出单根碳纳米管,但由于存在掺杂效应,可能改变了碳纳米管本身的固有性质,而且得到的单壁管长度也大都不理想。   比如说,电泳分离法就首先要使用表面活性剂对碳纳米管束进行处理,然后使用超声波冲击,最后在电泳池里分离。“这就产生了许多问题,碳纳米管有可能吸附表面活性剂分子从而改变自身的物理特性,从而使原来呈现的金属性或者是半导体性发生改变;另外,超生波的冲击还可能会破坏碳纳米管的结构,即便最后能够获得结构完整的管,一般来说长度也只有200纳米左右。”孙连峰说,“这给后续研究造成了诸多不便。因此,探索全新的、避免化学修饰的分离方法,是单壁碳纳米管以及器件研究的一个重要问题。”   意外发现的物理分离方法   “发现静电对碳纳米管束的分离作用纯属偶然。”孙连峰笑道,“一开始我们并没有计划要用电流来分离碳纳米管束,只是进行另一个实验的时候,意外发现了当碳纳米管束带有大量电荷的时候会产生‘爆炸’现象。”   这种碳纳米管束意外分离的现象当然引起了他们的关注,为了寻找“爆炸”的原因,他们进行了大量实验。   孙连峰解释说:“这种分离方法实际上利用的是最基本的同种电荷相互排斥的原理,让一束单壁碳纳米管带上同种电荷,当电荷之间的排斥力大于管之间的相互吸引力时,‘爆炸’就发生了。”   孙连峰把这种全新的碳纳米管物理分离方法命名为库仑爆炸法。相互分离的碳纳米管形成的那种独特、新奇的放射状格局,非常类似于科技馆里小朋友触摸静电球后怒发冲冠的样子,于是它被称为“纳米树”(nanotree)。纳米树的树枝大小和长度不一,有的树枝可能就是单根的单壁碳纳米管,长度则可以达到5微米以上。   为了确认库仑爆炸法并没有破坏分离后的碳纳米管的结构,孙连峰研究组进行了大量的验证工作。   通过原子力显微镜(AFM)、拉曼光谱(Raman)等实验证明,库仑爆炸法并不会破坏碳纳米管本身的结构。   另外,孙连峰研究组还利用碳纳米管均匀带电模型,对发生库仑爆炸所需的理论电压进行了计算,结果与实验数值十分接近。   不过,孙连峰对库仑爆炸法还是表示了谨慎的乐观。他指出,由于用于分离的碳纳米管束形状和结构不一,库仑爆炸法的可控性还不是很理想。   接下来,孙连峰准备在库仑爆炸法分离出来的纳米树上,测试单壁碳纳米管的物理特性,以及分离后单壁碳纳米管加上电极后会有什么有趣的事情发生。   “虽然每个纳米树的形状可能都不一样,但如果只是选取一个三端或者是四端结构的话,实际上我们已经制备出了多端器件的雏形,希望我们接下来的工作能够将多端器件研究向前推进一大步。”孙连峰说。 (来源:科学网)
󰈣󰈤
 
 
 
  免责声明:本文仅代表作者个人观点,与王朝网络无关。王朝网络登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
追忆.绯红色的审判
新竹的果子风
热裤女孩
凯宾斯基酒店随拍
金色草原
菜园小品
情人谷
广东惠州—巽寮湾的海景
 
>>返回首页<<
 为你推荐
 
 
 转载本文
 UBB代码 HTML代码
复制到剪贴板...
 
 热帖排行
 
 
 
 
©2005- 王朝网络 版权所有